Rozpad alfa: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja przejrzana]
Usunięta treść Dodana treść
TobeBot (dyskusja | edycje)
lit., linki, drobne redakcyjne, drobne merytoryczne
Linia 1: Linia 1:
{{Procesy jądrowe}}
{{Procesy jądrowe}}
'''Rozpad alfa''' (przemiana &alpha;) - [[reakcja jądrowa]] rozpadu, w której emitowana jest [[cząstka alfa| cząstka &alpha;]] (jądro [[hel (pierwiastek)|helu]] <sup>4</sup><sub>2</sub>He<sup>2+</sup>). Strumień emitowanych cząstek alfa przez rozpadajace się jądra to [[promieniowanie alfa]].
'''Rozpad alfa''' (przemiana &alpha;) [[reakcja jądrowa]] rozpadu, w której emitowana jest [[cząstka alfa| cząstka &alpha;]] (jądro [[hel (pierwiastek)|helu]] <sup>4</sup><sub>2</sub>He<sup>2+</sup>). Strumień emitowanych cząstek alfa przez rozpadające się jądra to [[promieniowanie alfa]].


Zapis reakcji rozpadu jądra atomu [[uran (pierwiastek)|uranu]]-238 (<sup>238</sup>U):
Zapis reakcji rozpadu jądra atomu [[uran (pierwiastek)|uranu]]-238 (<sup>238</sup>U):
Linia 20: Linia 20:


Emitowane cząstki mają zazwyczaj [[Energia kinetyczna|energię kinetyczną]] około 5 [[Elektronowolt|MeV]], co odpowiada prędkości 15,000 km/s.
Emitowane cząstki mają zazwyczaj [[Energia kinetyczna|energię kinetyczną]] około 5 [[Elektronowolt|MeV]], co odpowiada prędkości 15,000 km/s.
W rozpadzie &alpha;, cząstka &alpha; formuje się już w jądrze i jest odpychana [[Prawo Coulomba|siłami elektrostatycznymi]] i przyciągana oddziaływaniami silnymi pozostałej części jądra. W niewielkiej odległości od jądra siły przyciągania jądrowego przeważają, a w większej przeważają siły odpychania. Cząstka &alpha; ma energię mniejszą od energii potrzebnej na pokonanie sił przyciągania, ale dzięki kwantowemu [[zjawisko tunelowe|zjawisku tunelowania]] przenika przez wąską [[bariera potencjału|barierę potencjału]].
W rozpadzie &alpha;, cząstka &alpha; formuje się już w jądrze i jest równocześnie odpychana [[Prawo Coulomba|siłami elektrostatycznymi]] a przyciągana [[Oddziaływanie silne|oddziaływaniami silnymi]] pozostałej części jądra. W niewielkiej odległości od jądra siły przyciągania jądrowego przeważają, w większej zaś przeważają siły odpychania. Cząstka &alpha; ma energię mniejszą od energii potrzebnej na pokonanie sił przyciągania, ale dzięki kwantowemu [[zjawisko tunelowe|zjawisku tunelowania]] przenika przez wąską [[bariera potencjału|barierę potencjału]].


Energia cząstek alfa emitowanych z danego atomu ma określoną wartość, ponieważ rozpad jest dwuciałowy i prowadzi do określonych poziomów jądrowych w powstającym jądrze. Dla niektórych jąder możliwy jest rozpad do kilku różnych poziomów, ale ponieważ każdy z nich ma ściśle określoną energię, więc i określone energie cząstek alfa.
Energia cząstek alfa emitowanych z danego atomu ma określoną wartość, ponieważ rozpad jest dwuciałowy i prowadzi do określonych poziomów energetycznych powstającego jądra. W przypadku niektórych [[radionuklid]]ów (np. <sup>265</sup>Sg, <sup>266</sup>Sg) możliwy jest rozpad &alpha; do kilku różnych poziomów energetycznych jądra, dzięki czemu energie emitowanych cząstek alfa również ściśle określone. W takim przypadku udział procentowy cząstek alfa o danej energii zależy od prawdopodobieństwa zajęcia przez powstające jądro odpowiadającego poziomu energetycznego.


Rozpad &alpha; jest dość powszechnym zjawiskiem w przyrodzie, odpowiada za niemalże połowę promieniotwórczości naturalnej skorupy ziemskiej.
Rozpad &alpha; jest dość powszechnym zjawiskiem w przyrodzie, odpowiada za niemalże połowę promieniotwórczości naturalnej skorupy ziemskiej.

Wersja z 04:10, 15 wrz 2010

Rozpad alfa (przemiana α) – reakcja jądrowa rozpadu, w której emitowana jest cząstka α (jądro helu 42He2+). Strumień emitowanych cząstek alfa przez rozpadające się jądra to promieniowanie alfa.

Zapis reakcji rozpadu jądra atomu uranu-238 (238U):

lub:

Inne przykłady:

Ogólnie:

W wyniku tej reakcji powstające jądro ma liczbę atomową mniejszą o 2, a liczbę masową o 4 od rozpadającego się jądra.

Spośród izotopów spotykanych w naturze wiele jąder należących do łańcuchów uranowego oraz torowego jest emiterami cząstek α. Natomiast wśród ogółu jąder atomowych (także wytworzonych syntetycznie) rozpadowi α ulegają głównie jądra cięższe - powyżej masy 200, ale także w wśród pierwiastków ziem rzadkich oraz wśród bardzo egzotycznych izotopów cyny, telluru oraz ksenonu (okolice masy 100).

Emitowane cząstki mają zazwyczaj energię kinetyczną około 5 MeV, co odpowiada prędkości 15,000 km/s. W rozpadzie α, cząstka α formuje się już w jądrze i jest równocześnie odpychana siłami elektrostatycznymi a przyciągana oddziaływaniami silnymi pozostałej części jądra. W niewielkiej odległości od jądra siły przyciągania jądrowego przeważają, w większej zaś przeważają siły odpychania. Cząstka α ma energię mniejszą od energii potrzebnej na pokonanie sił przyciągania, ale dzięki kwantowemu zjawisku tunelowania przenika przez wąską barierę potencjału.

Energia cząstek alfa emitowanych z danego atomu ma określoną wartość, ponieważ rozpad jest dwuciałowy i prowadzi do określonych poziomów energetycznych powstającego jądra. W przypadku niektórych radionuklidów (np. 265Sg, 266Sg) możliwy jest rozpad α do kilku różnych poziomów energetycznych jądra, dzięki czemu energie emitowanych cząstek alfa są również ściśle określone. W takim przypadku udział procentowy cząstek alfa o danej energii zależy od prawdopodobieństwa zajęcia przez powstające jądro odpowiadającego poziomu energetycznego.

Rozpad α jest dość powszechnym zjawiskiem w przyrodzie, odpowiada za niemalże połowę promieniotwórczości naturalnej skorupy ziemskiej.

Zjawisko rozpadu α jest między innymi wykorzystywane w konstrukcji czujników dymu, w których rozpadające się jądra pierwiastka Ameryk-241, emitują cząstki α, które są pochłaniane przez dym.

Zobacz też