Rozmaitość różniczkowa: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja przejrzana]
Usunięta treść Dodana treść
m poprawa linków
WP:SK, drobne techniczne
Linia 1: Linia 1:
'''Rozmaitość różniczkowa''' – [[rozmaitość topologiczna]], której [[Parametryzacja (matematyka)|parametryzacje]] otwartych podzbiorów pokrywających w sumie całą rozmaitość są [[funkcja (matematyka)|funkcjami]] [[pochodna funkcji|klasy]] co najmniej <math>C^1</math> posiadającą [[przekształcenie liniowe|nieosobliwą]] [[różniczka|różniczkę]] w każdym punkcie [[dziedzina (matematyka)|dziedziny]]. Parametryzacje te tworzą atlas. Bez założenia wielości map w atlasie, wiele rozmaitości nie mogłoby być rozmaitościami różniczkowymi, np. kula, dla której nie istnieje globalna i gładka parametryzacja.
'''Rozmaitość różniczkowa''' – [[rozmaitość topologiczna]], której [[Parametryzacja (matematyka)|parametryzacje]] otwartych podzbiorów pokrywających w sumie całą rozmaitość są [[funkcja (matematyka)|funkcjami]] [[pochodna funkcji|klasy]] co najmniej <math>C^1</math> posiadającą [[przekształcenie liniowe|nieosobliwą]] [[różniczka|różniczkę]] w każdym punkcie [[dziedzina (matematyka)|dziedziny]]. Parametryzacje te tworzą atlas. Bez założenia wielości map w atlasie, wiele rozmaitości nie mogłoby być rozmaitościami różniczkowymi, np. kula, dla której nie istnieje globalna i gładka parametryzacja.


==Definicja==
== Definicja ==
[[Zbiór]] <math>M \subseteq \mathbb R^N</math> jest '''rozmaitością różniczkową''' (klasy <math>C^1</math> i wymiaru <math>n</math>, <math>0\leq n\leq N</math>), gdy:
[[Zbiór]] <math>M \subseteq \mathbb R^N</math> jest '''rozmaitością różniczkową''' (klasy <math>C^1</math> i wymiaru <math>n</math>, <math>0\leq n\leq N</math>), gdy:
* <math>\forall_{p \in M}</math> istnieje w <math>\mathbb R^N</math> [[zbiór otwarty|otwarte]] [[otoczenie (matematyka)|otoczenie]] <math>U \ni p</math> oraz zbiór otwarty <math>V \subseteq \mathbb R^n</math> i
* <math>\forall_{p \in M}</math> istnieje w <math>\mathbb R^N</math> [[zbiór otwarty|otwarte]] [[otoczenie (matematyka)|otoczenie]] <math>U \ni p</math> oraz zbiór otwarty <math>V \subseteq \mathbb R^n</math> i
Linia 12: Linia 12:
Część autorów, w tym Andrzej Birkholc w swej "Analizie wielu zmiennych" homeomorfizm o powyższych własnościach nazywa '''uogólnionym dyfeomorfizmem''', czy też raczej po prostu [[dyfeomorfizm|'''dyfeomorfizmem''']] rozszerzejąc w ten sposób jego definicję.
Część autorów, w tym Andrzej Birkholc w swej "Analizie wielu zmiennych" homeomorfizm o powyższych własnościach nazywa '''uogólnionym dyfeomorfizmem''', czy też raczej po prostu [[dyfeomorfizm|'''dyfeomorfizmem''']] rozszerzejąc w ten sposób jego definicję.


==Klasy==
== Klasy ==
W definicji można zażądać wyższej gładkości rozmaitości poprzez zastąpienie klasy <math>C^1</math> funkcji inną. '''Rozmaitością różniczkową klasy <math>C^r</math>''' nazywamy rozmaitość, której mapa jest funkcją klasy <math>C^r</math> dla <math>r \in \mathbb N^* \cup \{\infty\}</math>. [[Rozmaitość topologiczna]] jest rozmaitością różniczkową klasy <math>C^0</math>, z kolei '''rozmaitością analityczną''' nazywa się rozmaitość klasy <math>C^\omega</math>.
W definicji można zażądać wyższej gładkości rozmaitości poprzez zastąpienie klasy <math>C^1</math> funkcji inną. '''Rozmaitością różniczkową klasy <math>C^r</math>''' nazywamy rozmaitość, której mapa jest funkcją klasy <math>C^r</math> dla <math>r \in \mathbb N^* \cup \{\infty\}</math>. [[Rozmaitość topologiczna]] jest rozmaitością różniczkową klasy <math>C^0</math>, z kolei '''rozmaitością analityczną''' nazywa się rozmaitość klasy <math>C^\omega</math>.


==Zobacz też==
== Zobacz też ==
* [[rozmaitość topologiczna]],
* [[rozmaitość topologiczna]],
* [[mapa (matematyka)|mapa]],
* [[mapa (matematyka)|mapa]],
* [[atlas (matematyka)|atlas]].
* [[atlas (matematyka)|atlas]].


[[Kategoria:topologia]]
[[Kategoria:Topologia]]
[[Kategoria:rachunek różniczkowy i całkowy]]
[[Kategoria:Rachunek różniczkowy i całkowy]]
[[Kategoria:geometria]]
[[Kategoria:Geometria]]


[[de:Differenzierbare Mannigfaltigkeit]]
[[de:Differenzierbare Mannigfaltigkeit]]

Wersja z 12:42, 30 sie 2011

Rozmaitość różniczkowarozmaitość topologiczna, której parametryzacje otwartych podzbiorów pokrywających w sumie całą rozmaitość są funkcjami klasy co najmniej posiadającą nieosobliwą różniczkę w każdym punkcie dziedziny. Parametryzacje te tworzą atlas. Bez założenia wielości map w atlasie, wiele rozmaitości nie mogłoby być rozmaitościami różniczkowymi, np. kula, dla której nie istnieje globalna i gładka parametryzacja.

Definicja

Zbiór jest rozmaitością różniczkową (klasy i wymiaru , ), gdy:

  • istnieje w otwarte otoczenie oraz zbiór otwarty i
  • homeomorfizm taki, że
  • odwzorowanie jest klasy i
  • różniczka jest iniekcją dla każdego .

Funkcję nazywamy mapą rozmaitości, zaś jej parametryzacją.

Część autorów, w tym Andrzej Birkholc w swej "Analizie wielu zmiennych" homeomorfizm o powyższych własnościach nazywa uogólnionym dyfeomorfizmem, czy też raczej po prostu dyfeomorfizmem rozszerzejąc w ten sposób jego definicję.

Klasy

W definicji można zażądać wyższej gładkości rozmaitości poprzez zastąpienie klasy funkcji inną. Rozmaitością różniczkową klasy nazywamy rozmaitość, której mapa jest funkcją klasy dla . Rozmaitość topologiczna jest rozmaitością różniczkową klasy , z kolei rozmaitością analityczną nazywa się rozmaitość klasy .

Zobacz też