125 (liczba)
Wygląd
120 121 122 123 124 125 126 127 128 129 130 | |||||||
faktoryzacja |
| ||||||
---|---|---|---|---|---|---|---|
dzielniki |
1, 5, 25, 125 | ||||||
zapis rzymski |
CXXV | ||||||
dwójkowo |
1111101 | ||||||
ósemkowo |
175 | ||||||
szesnastkowo |
7D | ||||||
Wartości funkcji arytmetycznych | |||||||
|
125 (sto dwadzieścia pięć) – liczba naturalna następująca po 124 i poprzedzająca 126.
W matematyce
[edytuj | edytuj kod]- 125 jest sześcianem liczby 5
- 125 jest sumą trzech liczb pierwszych[1]
- 125 jest liczbą Friedmana (51+2)[2]
- 125 może być przedstawiona jako suma kwadratów na dwa sposoby 102 + 52 oraz 112 + 22
- 53 – 77 = 5 − 2 (znana jest tylko jeszcze jedna para liczb mająca taką własność (133 – 37 = 13 − 3))
- 125 jest palindromem liczbowym, czyli może być czytana w obu kierunkach, w pozycyjnym systemie liczbowym o bazie 4 (1331)
- 125 należy do sześciu trójek pitagorejskich (35, 120, 125), (44, 117, 125), (75, 100, 125), (125, 300, 325), (125, 1560, 1565), (125, 7812, 7813).
W nauce
[edytuj | edytuj kod]- liczba atomowa unbipentium (niezsyntetyzowany pierwiastek chemiczny)
- galaktyka NGC 125
- planetoida (125) Liberatrix
- kometa krótkookresowa 125P/Spacewatch
W kalendarzu
[edytuj | edytuj kod]125. dniem w roku jest 5 maja (w latach przestępnych jest to 4 maja). Zobacz też co wydarzyło się w roku 125, oraz w roku 125 p.n.e.
Zobacz też
[edytuj | edytuj kod]Przypisy
[edytuj | edytuj kod]- ↑ Numbers that are the product of exactly three (not necessarily distinct) primes.. The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-14]. (ang.).
- ↑ Friedman numbers: can be written in a nontrivial way using their digits and the operations + - * / ^ and concatenation of digits (but not of results).. The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-14]. (ang.).
Bibliografia
[edytuj | edytuj kod]- David G. Wells: The Penguin Book of Curious and Interesting Numbers: Revised Edition. Penguin Books, 1998, s. 121, seria: Penguin Press Science. ISBN 978-01-4026-149-3.
- The On-Line Encyclopedia of Integer Sequences. N. J. A. Sloane. [dostęp 2017-03-13]. (ang.).