Płaszczyzna

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ten artykuł dotyczy pojęcia z dziedziny geometrii. Zobacz też: miejscowości o nazwie Płaszczyzna.
Dwie przecinające się płaszczyzny w przestrzeni trójwymiarowej

Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.

Płaszczyznę można obrazować jako kartę papieru, powierzchnię stołu, czy płaskie pole, wyobrażając sobie je rozciągające się "w nieskończoność".

Własności[edytuj]

Podstawowe własności płaszczyzn opisują aksjomaty geometrii absolutnej, inne są twierdzeniami, czyli wnioskami z aksjomatów. Uwaga: niektóre z podanych własności zachodzą wyłącznie w przestrzeni trójwymiarowej.

  • przez trzy niewspółliniowe punkty przestrzeni (tzn. nie leżące na jednej prostej) przechodzi jedna i tylko jedna płaszczyzna;
    • przez daną prostą i punkt nie leżący na niej przechodzi jedna i tylko jedna płaszczyzna;
    • przez dwie proste przecinające się w jednym punkcie przechodzi jedna i tylko jedna płaszczyzna;
  • prosta przechodząca przez dwa różne punkty płaszczyzny zawiera się w tej płaszczyźnie;
  • jeśli dwie płaszczyzny mają jeden punkt wspólny, to mają również drugi punkt wspólny;
  • płaszczyzna jest zbiorem punktów przestrzeni jednakowo oddalonych od dwu ustalonych punktów;
  • każdy punkt płaszczyzny należy do nieskończenie wielu prostych;
  • każda płaszczyzna dzieli przestrzeń na dwa obszary (których częścią wspólną jest ta właśnie płaszczyzna), takich że dowolny odcinek w przestrzeni ma wspólny punkt z daną płaszczyzną wtedy i tylko wtedy, gdy jego końce leża w różnych obszarach; obszary te nazywamy półprzestrzeniami – płaszczyzna jest brzegiem każdego z tych obszarów;
  • każda prosta zawarta w płaszczyźnie dzieli ją na dwie części, takich że dowolny odcinek w tej płaszczyżnie ma wspólny punkt z daną prostą wtedy i tylko wtedy, gdy jego końce leża w różnych częściach; części te nazywane półpłaszczyznami; dana prosta jest brzegiem każdej z dwu półpłaszczyzn;
  • względem danej płaszczyzny prosta w przestrzeni znajduje się w jednej i tylko jednej z takich trzech pozycji:
    • nie ma punktów wspólnych z daną płaszczyzną – nazywamy ją wtedy równoległą do płaszczyzny;
    • ma jeden punkt wspólny;
    • jest zawarta w tej płaszczyźnie.

Płaszczyzna euklidesowa[edytuj]

Jeżeli do listy wyżej wymienionych własności dodamy następujący aksjomat (tzw. V pewnik Euklidesa):

przez dowolny punkt płaszczyzny, nie należący do danej prostej leżącej na tej płaszczyźnie, można poprowadzić tylko jedną prostą do niej równoległą,

to otrzymamy pojęcie płaszczyzny euklidesowej. Z tym właśnie pojęciem zaznajamiamy się w szkole.

Opis w przestrzeni [edytuj]

jest modelem dla geometrii euklidesowej i poniższy opis dotyczy płaszczyzny euklidesowej.

Równanie ogólne[edytuj]

W przestrzeni euklidesowej płaszczyzna jest zbiorem punktów, których współrzędne spełniają w danym kartezjańskim układzie współrzędnych równanie:

przy czym liczby nie mogą być jednocześnie równe zeru.

Jest to tak zwane równanie ogólne płaszczyzny. Wektor jest wektorem normalnym prostopadłym do tej płaszczyzny.

Równanie normalne[edytuj]

Równanie normalne płaszczyzny, to równanie postaci:

gdzie Liczby interpretujemy jako cosinusy kierunkowe prostej prostopadłej do płaszczyzny. Przejście z postaci ogólnej do normalnej dają wzory:

w których współczynnik normalizujący odpowiada normie (długości) wektora

Równanie odcinkowe[edytuj]

Do opisu płaszczyzny można też użyć równania odcinkowego:

Ma ono tę zaletę, że od razu daje punkty przecięcia płaszczyzny z osiami współrzędnych układu: są to punkty

Ma również istotną wadę: nie daje się w ten sposób przedstawić żadnej płaszczyzny przechodzącej przez początek układu współrzędnych (wówczas wszystkie mianowniki musiałyby być równe zeru, ) ani też żadnej płaszczyzny równoległej do którejkolwiek osi (wówczas odpowiedniemu współczynnikowi lub parze współczynników należałoby przypisać wartość nieskończoną, ).

Przejście z postaci ogólnej lub normalnej do odcinkowej dają wzory:

Równanie parametryczne[edytuj]

Równanie płaszczyzny przechodzącej przez punkt o wektorze wodzącym i równoległej do niewspółliniowych wektorów , ma postać:

gdzie .

lub

gdzie .

W postaci rozwiniętej wygląda następująco:

gdzie .

i nazywamy je równaniem parametrycznym.

Płaszczyzna przechodząca przez trzy punkty[edytuj]

Ponieważ istnieje tylko jedna płaszczyzna w przechodząca przez trzy niewspółliniowe punkty, dlatego można jednoznacznie wyznaczyć tę płaszczyznę. Jeżeli płaszczyzna przechodzi przez trzy punkty , i , jest określona następującym równaniem:

lub

Parametry równania ogólnego tej płaszczyzny, można wyznaczyć następująco:

Odległość punktu od płaszczyzny[edytuj]

Odległość punktu P o współrzędnych od płaszczyzny m zadanej równaniem ogólnym lub normalnym przedstawia wzór: