Płaszczyzna Niemyckiego

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Płaszczyzna Niemyckiego - przykład przestrzeni topologicznej szeroko wykorzystywany jako kontrprzykład w wielu pytaniach dotyczących topologii ogólnej. Konstrukcja płaszczyzny Niemcykiego pojawiła się w książce Topologie I Pawła Aleksandrowa i Heinza Hopfa z roku 1935. Autorzy sam pomysł przykładu przypisują Wiktorowi Niemyckiemu.

Konstrukcja[edytuj]

Niech będzie górną półpłaszczyzną zawierającą oś odciętych, tzn. niech

.

W zbiorze można wprowadzić topologię poprzez określenie bazy otoczeń każdego punktu :

  • jeśli i , to niech
, gdzie a oznacza standardową odległość na płaszczyźnie,
  • jeśli , to niech
, gdzie a .

Przestrzeń topologiczna nazywana jest płaszczyzną Niemyckiego.

Własności[edytuj]

Bibliografia[edytuj]

  • Paweł Aleksandrow, Heinz Hopf: Topologie I. Wyd. pierwsze. Berlin: Springer, 1935.
  • Ryszard Engelking: Topologia ogólna. Wyd. pierwsze. Warszawa: PWN, 1976, s. 36, 60, 71, 98, 273, 342, 391, 400.