Prawo Hooke’a

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Prawo Hooke’a – prawo mechaniki określające zależność odkształcenia od naprężenia[1]. Głosi ono, że odkształcenie ciała pod wpływem działającej na nie siły jest proporcjonalne do tej siły[2]. Stosunek naprężenia wywołanego przyłożeniem siły do powstałego odkształcenia, jest nazywany współczynnikiem (modułem) sprężystości.

Omawiana zależność pozostaje prawdziwa tylko dla niezbyt dużych odkształceń, nieprzekraczających tzw. granicy Hooke’a (zwanej też granicą proporcjonalności) i tylko dla niektórych materiałów. Prawo Hooke’a zakłada też, że odkształcenia ciała, w reakcji na działanie sił, następują w sposób natychmiastowy i całkowicie znikają, gdy przyłożone siły przestają działać. Takie uproszczenie jest wystarczające jedynie dla ciał o pomijalnie małej plastyczności i lepkości.

Ta prawidłowość została sformułowana przez Roberta Hooke’a w 1660 r. w formie ut tensio sic vis (łac. jakie wydłużenie, taka siła) i przekazana w postaci anagramu ceiiinosssttuv.

Osiowy stan naprężenia i odkształcenia[edytuj | edytuj kod]

Zależność obciążenia i naprężenia od odkształceń dla stali zwykłej z zaznaczonym zakresem stosowalności prawa Hooke’a

Najprostszym przykładem zastosowania prawa Hooke’a jest rozciąganie statyczne pręta[3]. Bezwzględne wydłużenie takiego pręta jest wprost proporcjonalne do siły przyłożonej do pręta, do jego długości i odwrotnie proporcjonalne do pola przekroju poprzecznego pręta. Współczynnikiem proporcjonalności jest moduł Younga E

gdzie:

– siła rozciągająca,
– pole przekroju poprzecznego,
moduł Younga,
– wydłużenie pręta,
– długość początkowa.

W przypadku pręta bądź drutu o stałej średnicy można to wyrazić prościej: wydłużenie względne jest proporcjonalne do działającej siły.

Stosując definicje odkształcenia i naprężenia można powiedzieć, że względne wydłużenie jest proporcjonalne do naprężenia, co można zapisać:

gdzie:

– odkształcenie,
– naprężenie.

Trójwymiarowy stan naprężenia i odkształcenia[edytuj | edytuj kod]

Prawo Hooke’a dla ogólnego, trójwymiarowego stanu naprężenia w przypadku materiału izotropowego uogólnił w 1822 Augustin Louis Cauchy[2], poniżej podano uogólnioną postać prawa Hooke'a[4], jest ono tu zapisane w postaci układu równań:

dla naprężeń i odkształceń normalnych (liniowych)
dla naprężeń stycznych i odkształceń postaciowych (kątowych)

gdzie:

– składowe odkształcenia normalnego w punkcie,
– naprężenie normalne w punkcie,
– składowe odkształcenia postaciowego w punkcie,
– naprężenie styczne w punkcie,
– współczynnik sprężystości postaciowej (poprzecznej) lub moduł Kirchhoffa,
moduł Younga,
współczynnik Poissona.

Zapis tensorowy[edytuj | edytuj kod]

W ujęciu ogólnym (dla materiału anizotropowego) jako operator proporcjonalności stosuje się tensor sztywności

lub tensor podatności

gdzie sumowanie odbywa się wg. konwencji sumacyjnej Einsteina.

Przypisy[edytuj | edytuj kod]

  1. Bielajew N.M., Wytrzymałość materiałów, Wyd. MON, Warszawa 1954
  2. a b Nawrot, Karolczak i Jaworska 2013 ↓, s. 187.
  3. Piechnik S., Wytrzymałość materiałów, PWN, Warszawa-Kraków 1980
  4. Maksymilian Tytus Huber, Stereomechanika techniczna, t. I, Warszawa: PZWS, 1951.

Bibliografia[edytuj | edytuj kod]

  • Alicja Nawrot, Dorota Karolczak, Jadwiga Jaworska: Encyklopedia – fizyka z astronomią. Kraków: GREG, 2013. ISBN 978-83-7517-210-2.