Wartość oczekiwana

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Wartość oczekiwana (wartość średnia, przeciętna, dawniej nadzieja matematyczna) – wartość określająca spodziewany wynik doświadczenia losowego. Wartość oczekiwana to inaczej pierwszy moment zwykły. Estymatorem wartości oczekiwanej rozkładu cechy w populacji jest średnia arytmetyczna.

Definicja formalna[edytuj]

Zmienna dyskretna[edytuj]

Niech będzie zmienną losową typu dyskretnego. Wartością oczekiwaną nazywa się sumę iloczynów wartości tej zmiennej losowej oraz prawdopodobieństw z jakimi są one przyjmowane.

Jeżeli dyskretna zmienna losowa przyjmuje wartości z prawdopodobieństwami wynoszącymi odpowiednio , to wartość oczekiwana zmiennej losowej wyraża się wzorem

.

Jeżeli zmienna przyjmuje nieskończenie ale przeliczalnie wiele wartości, to we wzorze na jej wartość oczekiwaną występuje w miejsce (istnieje ona tylko wtedy, gdy szereg ten jest zbieżny bezwzględnie).

Zmienna ciągła[edytuj]

Jeżeli jest zmienną losową typu ciągłego zdefiniowaną na przestrzeni probabilistycznej , to wartość oczekiwaną zmiennej losowej definiuje się jako całkę

o ile powyższa całka istnieje, tzn. jeżeli:

.

Właściwości[edytuj]

Jeśli jest zmienną losową o funkcji gęstości prawdopodobieństwa , to jej wartość oczekiwana wynosi

.

Jeżeli jest funkcją mierzalną, to

.

Jeśli istnieją oraz , to:

  • , gdzie jest funkcją stałą (wynika z jednorodności sumy/szeregu/całki),
  • (wynika z liniowości sumy/szeregu/całki),
  • jeżeli niezależne, to ,
  • jeżeli prawie wszędzie, to ,
  • .

W mechanice kwantowej[edytuj]

Pojęcie wartości oczekiwanej jest szeroko stosowane w mechanice kwantowej. Wartość oczekiwana obserwabli, której odpowiada operator dla stanu kwantowego układu opisywanego znormalizowaną funkcją falową wynosi , gdzie całkowanie przebiega po wszystkich możliwych wartościach zmiennych układu.

W notacji Diraca wzór ten można zapisać: .

Nieoznaczoność wartości oczekiwanej , czyli wariancja , wynosi .

Zobacz też[edytuj]

Bibliografia[edytuj]

  • Jacek Jakubowski, Rafał Sztencel: Wstęp do teorii prawdopodobieństwa. Warszawa: Script, 2004, s. 79. ISBN 83-89716-01-1.