Objętość (matematyka)

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ten artykuł dotyczy objętości w geometrii trójwymiarowej. Zobacz też: inne znaczenia.

Objętość jest miarą przestrzeni.

Konstrukcja pojęcia[edytuj]

W matematyce objętość najprościej zdefiniować w następujący sposób:

  • Pokrywamy całą przestrzeń siatką przylegających sześcianów o bokach .
  • Liczbę sześcianów, które mają choćby jeden punkt wspólny z bryłą lub obszarem przestrzeni, którego objętość chcemy obliczyć oznaczmy przez .

Tworząc rozmaite siatki sześcianów o coraz to mniejszych krawędziach , , itd. uzyskamy ciąg liczb . Objętością nazywamy granicę:

.

Granica ta nie zawsze istnieje. Jeśli nie istnieje, objętości nie da się obliczyć tą metodą.

Co więcej, konstrukcja ta ma jeszcze jedną wadę – choć dobrze sprawdza się w typowych wypadkach, jednak nie posiada podstawowej własności, która intuicyjnie powinna charakteryzować objętość: objętość dwóch nie nachodzących na siebie brył może być większa niż objętość bryły powstałej z ich połączenia.

Przykład: zbiory

oraz

mają obydwa objętości równe jeden, są rozłączne (mają pusty przekrój), a ich suma (czyli wnętrze sześcianu) również ma objętość równą jeden.

Udowodniono jednak, iż nie istnieje żadna nietrywialna funkcja, którą dałoby się zmierzyć dowolną bryłę i która dla dwóch rozłącznych brył dawałaby wynik równy ich sumie.

 Osobny artykuł: Miara Lebesgue'a.

Objętość pod powierzchnią[edytuj]

Objętość między powierzchnią daną równaniem , a płaszczyzną w obszarze jest równe całce podwójnej

.

Jednostki objętości[edytuj]

Za jednostkę objętości przyjmuje się sześcian o długości krawędzi odpowiadających jednostce długości w danym systemie miar. W układzie SI jednostką objętości jest sześcian o boku 1 metra, czyli metr sześcienny.


Zobacz też[edytuj]