Zbiór pusty

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Zbiór pustyzbiór niezawierający żadnych elementów; oznaczany symbolami ∅, , rzadziej {}. Zbiór, który nie jest pusty, tj. zawiera choćby jeden element, nazywany jest zbiorem niepustym.

W teorii mnogości Zermela-Fraenkla istnienie zbioru pustego jest zagwarantowane przez aksjomat zbioru pustego, a jego jedyność wynika z aksjomatu ekstensjonalności.

Własności[edytuj]

  • Zbiór pusty jest podzbiorem każdego zbioru:
    ,
bo zgodnie z definicją zachodzi
.
Prawdziwość powyższej implikacji wynika z reguły z fałszu wynika wszystko.
  • Suma dowolnego zbioru A i zbioru pustego jest równa zbiorowi A:
  • Iloczyn dowolnego zbioru A i zbioru pustego jest równy zbiorowi pustemu:
  • Iloczyn kartezjański dowolnego zbioru A i zbioru pustego jest równy zbiorowi pustemu:
  • Jedynym podzbiorem zbioru pustego jest zbiór pusty:
Oznacza to, że zbiór potęgowy zbioru pustego zawiera jeden element, czyli zbiór pusty.
  • Moc zbioru pustego wynosi 0:
  • Dla dowolnego zbioru A zbiór pusty jest relacją w A zwaną relacją pustą.
  • Dla dowolnego zbioru A można określić funkcję , zwaną funkcją pustą.
  • Jeżeli jest dowolną funkcją zdaniową, to prawdą jest, że:
  • Ponadto dla dowolnej funkcji zdaniowej i zbioru A, na którym jest ona określona, zachodzi warunek:
  • etc.

Zobacz też[edytuj]

Bibliografia[edytuj]

  1. Rozdział II (pdf). W: Kazimierz Kuratowski, Andrzej Mostowski: Teoria mnogości. T. 27. Warszawa-Wrocław: Monografie matematyczne, 1952, s. 8–10. [dostęp 18.06.2011].