Ernst Zermelo

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ernst Zermelo we Fryburgu, 1953

Ernst Friedrich Ferdinand Zermelo (ur. 27 lipca 1871 w Berlinie, zm. 21 maja 1953 we Fryburgu Bryzgowijskim) – niemiecki matematyk.

Sformułował jeden z podstawowych dla teorii mnogości aksjomatów zwany aksjomatem wyboru i z jego pomocą udowodnił twierdzenie mówiące, że każdy zbiór można dobrze uporządkować.

W 1905 r. Zermelo rozpoczął prace nad aksjomatyzacją teorii mnogości i w 1908 przedstawił system jej aksjomatów. System ten został następnie zmodyfikowany niezależnie przez Fraenkela i Skolema i pod nazwą aksjomatów Zermelo-Fraenkela jest do dziś najpowszechniej stosowanym systemem aksjomatów teorii mnogości.

Twierdzenie Zermelo[edytuj | edytuj kod]

a b c d e f g h
8
Chessboard480.svg
a8 black rook
b8 black knight
c8 black bishop
d8 black queen
e8 black king
f8 black bishop
g8 black knight
h8 black rook
a7 black pawn
b7 black pawn
c7 black pawn
d7 black pawn
e7 black pawn
f7 black pawn
g7 black pawn
h7 black pawn
a2 white pawn
b2 white pawn
c2 white pawn
d2 white pawn
e2 white pawn
f2 white pawn
g2 white pawn
h2 white pawn
a1 white rook
b1 white knight
c1 white bishop
d1 white queen
e1 white king
f1 white bishop
g1 white knight
h1 white rook
8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
a b c d e f g h
Pozycja wyjściowa w szachach

W 1913 roku opublikował artykuł zatytułowany Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, w którym omówił zastosowanie teorii mnogości do teorii gry w szachy[1]. Zawarte w nim twierdzenie uważane jest współcześnie za pierwsze opublikowane twierdzenie w teorii gier[2]. Miało to miejsce wiele lat przed opublikowaniem pionierskich prac w tej dziedzinie przez Johna von Neumanna, którego powszechnie uznaje się za ojca tej dziedziny wiedzy.

W swoim artykule Zermelo zauważył, że w szachach istnieją pozycje, w których jedna ze stron może zapewnić sobie wygraną, na przykład matując przeciwnika w dwóch ruchach. Stanowią one podstawę kompozycji szachowych. Rozwiązanie takiego problemu ma miejsce, jeżeli można znaleźć parę ruchów, która zapewnia jednej stronie wygraną, niezależnie od tego, jaki ruch wykona przeciwnik. Prowadzi to do uogólnionego problemu, czy istnieje liczba N, taka że w ustawieniu wyjściowym jedna strona może zamatować przeciwnika w N ruchach.

W swoim artykule Zermelo rozważał odpowiedź na podobne pytanie. Analizował, czy dla każdej pozycji, która może mieć miejsce podczas gry w szachy, można w matematycznie obiektywny sposób wyznaczyć wynik partii oraz optymalne posunięcie gracza, na którego przypada ruch[2]. Podczas gdy Zermelo nie udzielił ostatecznej odpowiedzi na pytanie, czy pozycja wyjściowa w szachach gwarantuje zwycięstwo którejkolwiek ze stron, zauważył również, że jeżeli odpowiedź na nie byłaby znana, wówczas szachy utraciłby swój charakter jako gra[2].

We współczesnej teorii gier twierdzenie, które udowodnił Zermelo, obrosło niemal legendą i podaje się wiele różnych nierównoważnych jego sformułowań[2]. Wynika to zapewne z faktu, że artykuł Zermelo został wydany po niemiecku i przez wiele lat nie był przetłumaczony na język angielski. Jednym z najpowszechniejszych jest:

W szachach albo białe mogą sobie zapewnić wygraną, albo czarne mogą sobie zapewnić wygraną albo obie strony mogą sobie zapewnić remis.

Inni autorzy podają bardziej uogólnione sformułowania, jak np.[2]:

Każda skończona gra z doskonałą informacją ma punkt równowagi Nasha, który może zostać wyznaczony przez zastosowanie indukcji wstecznej.

Przypisy

  1. Ernst Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. „Proceedings of the Fifth Congress of Mathematicians”, s. 501–504, 1913. 
  2. 2,0 2,1 2,2 2,3 2,4 Ulrich Schwalbe, Paul Walker. Zermelo and the Early History of Game Theory. „Games and Economic Behavior”. 34, s. 123–137, 2001. 

Bibliografia[edytuj | edytuj kod]

  • Ulrich Schwalbe, Paul Walker. Zermelo and the Early History of Game Theory. „Games and Economic Behavior”. 34, s. 123–137, 2001. 

Linki zewnętrzne[edytuj | edytuj kod]