Sztuczna inteligencja

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ujednoznacznienie Zobacz też: inne znaczenia.

Sztuczna inteligencja (ang. Artificial IntelligenceAI) – dziedzina wiedzy obejmująca logikę rozmytą, obliczenia ewolucyjne, sieci neuronowe, sztuczne życie i robotykę. Sztuczna inteligencja to również dział informatyki zajmujący się inteligencją – tworzeniem modeli zachowań inteligentnych oraz programów komputerowych symulujących te zachowania. Można ją też zdefiniować jako dział informatyki zajmujący się rozwiązywaniem problemów, które nie są efektywnie algorytmizowalne. Termin wymyślił John McCarthy.

Sztuczna inteligencja ma dwa podstawowe znaczenia:

Głównym zadaniem badań nad sztuczną inteligencją w drugim znaczeniu jest konstruowanie maszyn i programów komputerowych zdolnych do realizacji wybranych funkcji umysłu i ludzkich zmysłów niepoddających się prostej numerycznej algorytmizacji. Problemy takie bywają nazywane AI-trudnymi i zalicza się do nich między innymi:

Historia badań[edytuj | edytuj kod]

W 1950 roku Alan Mathison Turing zaproponował by możliwość udawania człowieka w zdalnej rozmowie uznać za test inteligencji maszyn (test Turinga)[1]. w latach 50. XX wieku powstało pierwsze laboratorium AI na Uniwersytecie Carnegie Mellon, założone przez Allena Newella i Herberta Simona i kilka lat później analogiczne laboratorium w Massachusetts Institute of Technology, założone przez Johna McCarthy'ego. Oba te laboratoria są wciąż wiodącymi ośrodkami AI na świecie.

Termin sztuczna inteligencja został po raz pierwszy zaproponowany prawdopodobnie przez Johna McCarthy'ego, który w 1955 r. zdefiniował go w następujący sposób:

"konstruowanie maszyn, o których działaniu dałoby się powiedzieć, że są podobne do ludzkich przejawów inteligencji".

Istnieją dwa podstawowe podejścia do pracy nad AI:

  • Pierwsze to tworzenie modeli matematyczno-logicznych analizowanych problemów i implementowanie ich w formie programów komputerowych, mających realizować konkretne funkcje uważane powszechnie za składowe inteligencji. W tej grupie, tzw. podejścia symbolicznego, są np. algorytmy genetyczne, metody logiki rozmytej i wnioskowania bazującego na doświadczeniu.
  • Drugie to podejscie subsymboliczne polegające na tworzeniu struktur i programów "samouczących się", bazujących na modelach sieci neuronowej i sieci asocjacyjnych, oraz opracowywanie procedur "uczenia" takich programów, rozwiązywania postawionych im zadań i szukania odpowiedzi na wybrane klasy "pytań".

W trakcie wieloletniej pracy laboratoriów i zespołów AI stosujących oba podejścia do problemu, okazało się, że postęp w tej dziedzinie jest i będzie bardzo trudny i powolny. Często mimo niepowodzeń w osiąganiu zaplanowanych celów, laboratoria te wypracowywały nowe techniki informatyczne, które okazywały się użyteczne do zupełnie innych celów. Przykładami takich technik są np. języki programowania LISP i Prolog. Laboratoria AI stały się też "rozsadnikiem" kultury hakerskiej.

Najnowsze podejście do problemów AI to rozwijanie różnych form inteligencji rozproszonej (wzorowanej na organizacjach ludzkich, np. personoidy oraz tzw. agentów autonomicznych i "inteligentnych". Dziedzina ta nosi nazwę Technologii Agentów Inteligentnych (ang. Intelligent Agent Technology).

Współczesne praktyczne zastosowania AI[edytuj | edytuj kod]

  • Technologie oparte na logice rozmytej – powszechnie stosowane do np. sterowania przebiegiem procesów technologicznych w fabrykach w warunkach "braku wszystkich danych".
  • Systemy ekspertowe – systemy wykorzystujące bazę wiedzy (zapisaną w sposób deklaratywny) i mechanizmy wnioskowania do rozwiązywania problemów.
  • Maszynowe tłumaczenie tekstów – systemy tłumaczące nie dorównują człowiekowi, robią intensywne postępy, nadają się szczególnie do tłumaczenia tekstów technicznych.
  • Sieci neuronowe – stosowane z powodzeniem w wielu zastosowaniach łącznie z programowaniem "inteligentnych przeciwników" w grach komputerowych.
  • Uczenie się maszyn – dział sztucznej inteligencji zajmujący się algorytmami potrafiącymi uczyć się podejmować decyzje bądź nabywać wiedzę.
  • Eksploracja danych – omawia obszary, powiązanie z potrzebami informacyjnymi, pozyskiwaniem wiedzy, stosowane techniki analizy, oczekiwane rezultaty.
  • Rozpoznawanie obrazów – stosowane są już programy rozpoznające osoby na podstawie zdjęcia twarzy lub rozpoznające automatycznie zadane obiekty na zdjęciach satelitarnych.
  • Rozpoznawanie mowy i rozpoznawanie mówców – stosowane już powszechnie na skalę komercyjną.
  • Rozpoznawanie pisma (OCR) – stosowane już masowo np. do automatycznego sortowania listów, oraz w elektronicznych notatnikach.
  • Sztuczna twórczość – istnieją programy automatycznie generujące krótkie formy poetyckie, komponujące, aranżujące i interpretujące utwory muzyczne, które są w stanie skutecznie "zmylić" nawet profesjonalnych artystów, tak, że ci nie uznają utworów za sztucznie wygenerowane.
  • W ekonomii, powszechnie stosuje się systemy automatycznie oceniające m.in. zdolność kredytową, profil najlepszych klientów, czy planujące kampanie reklamowe. Systemy te poddawane są wcześniej automatycznemu uczeniu na podstawie posiadanych danych (np. klientów banku, którzy regularnie spłacali kredyt i klientów, którzy mieli z tym problemy).

Nieudane próby zastosowań[edytuj | edytuj kod]

  • Programy skutecznie wygrywających w niektórych grach. Jak dotąd nie ma programów skutecznie wygrywających w go i brydża sportowego. Istnieją programy grające w szachy na poziomie wyższym niż arcymistrzowski, a poziom arcymistrzowski osiągają obecnie programy działające na mobilnych urządzeniach[2]. Wcześniej podobne zwycięstwa odnosiły programy grające w warcaby i warcaby polskie[3]
  • Programy idealnie naśladujące ludzi, rozmawiające przy użyciu tekstu i potrafiłby przejść test Turinga. Istnieją programy do konwersacji z komputerem, ale każdy człowiek, który miał z nimi wcześniej do czynienia, w krótkim czasie jest w stanie zorientować się, że rozmawia z maszyną, a nie innym człowiekiem.
  • Programy skutecznie tłumaczące teksty literackie i mowę potoczną. Istnieją programy do automatycznego tłumaczenia, ale sprawdzają się one tylko w bardzo ograniczonym stopniu. Podstawową trudnością jest tu złożoność i niejasność języków naturalnych, a w szczególności brak zrozumienia przez program znaczenia tekstu.

Zobacz też[edytuj | edytuj kod]

Przypisy

  1. Christof Koch, Giulio Tononi. Test na świadomość. „Świat Nauki”. nr. 7 (239), s. 32-35, lipiec 2011. Prószyński Media. ISSN 0867-6380. 
  2. Pocket Fritz 4 osiągnął poziom 2898 punktów
  3. The draughts program Buggy

Linki zewnętrzne[edytuj | edytuj kod]

Commons in image icon.svg