Zmiana klimatu

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Nauki o atmosferze [kat.]
Meteorologia [kat.]
Pogoda [kat.]
Klimatologia [kat.]
Klimat [kat.]
Zmiana klimatu [kat.]
Zmiany globalnej temperatury od 1900 do 2004 roku. Czarną linią zaznaczono średnią roczną. Czerwoną linią zaznaczono średnią (bieżącą) po okresie dziesięcioletnim. Na szaro zaznaczony jest przedział ufności.

Pod pojęciem klimat rozumie się średni stan atmosfery i oceanu w skalach od kilku lat do milionów lat. Zmiany klimatu wynikają z czynników zewnętrznych takich jak ilość dochodzącego promieniowania słonecznego lub czynników wewnętrznych takich jak działalność człowieka (zmiany antropogeniczne) lub wpływ czynników naturalnych. W ostatnich latach termin „ogólna zmiana klimatu”, używany jest w kontekście globalnego ocieplenia i wzrostu temperatury na powierzchni Ziemi, ale rozważane są scenariusze powodujące oziębienie powierzchni Ziemi (np. wywołane odbiciem energii słonecznej od zwiększonej pokrywy chmur lub aerozoli atmosferycznych).

Przyczyny zmian klimatu są tematem intensywnych badań. Kolejne raporty Międzyrządowego Zespołu do spraw Zmian Klimatu (IPCC) precyzują obecny stan wiedzy na temat przyczyn zmian klimatu. Ostatni raport został opublikowany w 2007. Raport IPCC, raport Amerykańskiej Narodowej Akademii Nauk (NAS) oraz raport opublikowany przez grupę G8 stwierdzają, że większość zmian temperatury obserwowanych w ostatnich 50 latach należy przypisać działalności człowieka. W latach 1906–2005 obserwowane zmiany temperatury w pobliżu powierzchni Ziemi wyniosły 0,74±0,18 °C. Między rokiem 1990 a 2010 zanotowano aż 12 najgorętszych lat.[potrzebne źródło]


Metody badań zmian klimatu[edytuj | edytuj kod]

Przyczyny zmian klimatu są badane za pomocą (a) numerycznych modeli ogólnej cyrkulacji Ziemi (ang. General Circulation Models, w skrócie GCM), (b) badań paleoklimatycznych, (c) pomiarów bezpośrednich w atmosferze i prac polowych, (d) reanalizy istniejących danych. Każda z tych metod ma zalety i wady.


Badania paleoklimatyczne[edytuj | edytuj kod]

Jedną z metod wnioskowania o obecnych zmianach klimatu jest zrozumienie zjawisk powodujących zmiany klimatu w przeszłości. Te metody noszą ogólną nazwę badań paleoklimatycznych.

Badania polowe[edytuj | edytuj kod]

Inną metodą badania zmian klimatu jest prowadzenie badań eksperymentalnych w atmosferze. Podczas gdy zmiany klimatu mierzone są w kategoriach lat, intensywne pomiary polowe prowadzone są zazwyczaj przez kilka tygodni. W badaniach polowych wybiera się zazwyczaj pewien proces fizyczny. Przykładowo, w czasie zimowego monsunu indyjskiego na półkuli północnej jest dużo zanieczyszczeń przywiewanych z Indii nad Ocean Indyjski. W tym samym czasie na półkuli południowej nie ma zanieczyszczeń. Tę różnicę można wykorzystać do zrozumienia roli pyłów zawieszonych na zmianę klimatu. W ostatniej dekadzie przeprowadzono kilka eksperymentów klimatycznych badających różne aspekty zmian klimatu: CEPEX, INDOEX, FIRE-Cirrus, ARESE, SUCCESS, MINOS, ACE-Asia, ACE-2 i inne.

Ponowna analiza istniejących danych[edytuj | edytuj kod]

Ciągi pomiarowe nawet najbardziej podstawowych wielkości atmosferycznych, takich jak temperatura powierzchni Ziemi, są bardzo krótkie. Większość systematycznych pomiarów zaczęto dokonywać dopiero po II wojnie światowej. Jakość tych danych zależy od kraju, w którym robione były pomiary, problemem jest duża odległość pomiędzy stacjami pomiarowymi, zwłaszcza w obszarach oceanicznych. Jednym z największych sukcesów współczesnej meteorologii jest użycie metod teledetekcyjnych z satelitów meteorologicznych i z pomiarów naziemnych. Pozwoliło to na uzyskiwanie globalnych informacji na temat rozkładu temperatury z wysokością, na temat prędkości wiatru na powierzchni oceanu lub na temat ilości chlorofilu w oceanie (kolor oceanu). Dodatkowym problemem w ocenie zmian klimatu jest fakt, że techniki pomiarowe zmieniają się w czasie. Rozwiązaniem było ujednolicenie pomiarów za pomocą technik asymilacji danych i przeprowadzenie dokładnej analizy jakościowej. Metoda ta nazywa się ponowną analizą danych meteorologicznych, które dostępne są na szczegółowym poziomie dla atmosfery i powierzchni Ziemi od lat 60.–70. XX w.

Modelowanie klimatu[edytuj | edytuj kod]

Zebrane dane klimatyczne służą za bazodanową podstawę do komputerowych programach modeli klimatycznych. Do modelowania klimatu używa się superkomputerów, których moc obliczeniowa ciągle rośnie, pozwalając na coraz dokładniejsze prognozy.

Numeryczne modele ogólnej zmiany klimatu[edytuj | edytuj kod]

Modele numeryczne globalnej cyrkulacji (GCM) Ziemi opierają się na modelach podobnych do modeli numerycznych używanych w prognozie pogody. Innymi słowy, z pierwszych zasad fizycznych opisuje się przepływ powietrza w atmosferze a wiele procesów fizycznych, takich jak pokrywa chmur, oddziaływanie powietrza w swobodnej atmosferze z górami, transport aerozoli atmosferycznych, ilość energii słonecznej absorbowanej i odbijanej w atmosferze, jest parametryzowanych na podstawie równań fizyki. Np. wymiana promieniowania słonecznego w modelach GCM jest opisana najczęściej za pomocą dwustrumieniowego przybliżenia równania transportu. Zaletą modeli GCM jest możliwość studiowania różnych scenariuszy. Np można zadać pytanie jaki jest wpływ na średnią temperaturę na powierzchni Ziemi dwukrotnego zwiększenia ilości dwutlenku węgla. Można też zrekonstruować jakie są czynniki wpływające na zmiany temperatury. Wadą modeli numerycznych GCM jest to, że parametryzacje (przybliżenia) stosowane do opisu zjawisk fizycznych mogą być kwestionowane oraz fakt, że rozdzielczość modeli GCM (jak blisko oddalone są od siebie kolejne punkty na siatce opisującej wyniki symulacji) jest ograniczona. Można w przybliżeniu powiedzieć, że modele numeryczne GCM badają scenariusze, lub hipotezy sprzężeń zwrotnych (ang. feedback) pomiędzy różnymi elementami klimatu.

Naturalne czynniki zmiany klimatu[edytuj | edytuj kod]

Teoria cykli Milankovića[edytuj | edytuj kod]

Jeden z astronomicznych czynników kontrolujących zmiany klimatu na ziemi. Zmiana nachylenia osi obrotu Ziemi.
Na czerwono, zielono, i niebiesko zaznaczone są zmiany parametrów astronomicznych w czasie ostatniego miliona lat. Na żółto zaznaczona jest ilość dochodzącej energii słonecznej na 65N. Na czarno zaznaczone są stadia oblodzenia na Ziemi.

Milutin Milanković pomiędzy 1911 a 1941 rokiem opracował teorię rekonstrukcji warunków klimatycznych panujących dawniej na Ziemi w zależności od cykli astronomicznych (cykl ekscentryczny, cykl skośny, i cykl precesyjny). Ta ogólnie przyjęta teoria jest przykładem zewnętrznego wpływu na warunki klimatyczne Ziemi.

Zmiany stałej słonecznej[edytuj | edytuj kod]

Liczba plam słonecznych - nieregularne zmiany aktywności Słońca w ostatnich 350 latach
Zmiana stałej słonecznej w czasie ostatnich 30 lat. Widać cykl 11-letni. Oznaczenia wykresów: Irradiancja (dzienna/roczna), Plamy słoneczne, Rozbłysk słoneczny, Strumień radiowy 10,7 cm.

'Zmienną' o podstawowym znaczeniu dla klimatu na Ziemi jest Słońce. Zmiana ilości energii dochodzącej do Ziemi ulega zmianie niezależnej od cykli Milankowića. Istnieje wiele prac naukowych łączących zmianę stałej słonecznej ze zmianami klimatu m.in. przed rewolucją przemysłową. Nawiązują one m.in. do wystąpienia średniowiecznego optimum klimatycznego i tzw.małej epoki lodowej.

Wpływ erupcji wulkanów[edytuj | edytuj kod]

Information icon.svg Osobny artykuł: Rok bez lata.

Erupcja wulkanu Tambora (VEI=7)[1], 5 kwietnia do 15 kwietnia 1815 w Indonezji wprowadziła 70 Gt popiołu wulkanicznego do atmosfery sięgając warstw ponad 40 km i powodując największy egzystencjalny kryzys w czasach nowożytnych[2]. Mróz w maju 1815 w Ameryce Północnej zniszczył większość plonów, a w czerwcu dwie wielkie burze śnieżne we wschodniej Kanadzie i w Nowej Anglii doprowadziły do wielu ofiar śmiertelnych. Na początku czerwca w mieście Quebec leżało prawie 30 cm śniegu, co dodatkowo w konsekwencji doprowadziło do wymrożenia ziemi i zniszczenia upraw.

Erupcja pogłębiła efekt Minimum Daltona, małej aktywności słonecznej w latach 1790-1830, oraz innych wulkanów Mayon w 1814 roku, Soufrière (Saint Vincent) w 1812 oraz być może nieznanego wulkanu około 1810 r .

Erupcję wulkanu 'napędzały' gazy wulkaniczne S02 i głównie C02, który przyspieszył koniec małej epoki lodowej. Poziom C02 tej epoki maleje do 275 ppm około 1800[3].

stężenie S02 w lodzie z Greenlandii

Gazy cieplarniane i pyły zawieszone[edytuj | edytuj kod]

Information icon.svg Zobacz też: Efekt cieplarniany.

Wiele gazów cieplarnianych takich jak dwutlenek siarki czy dwutlenek węgla jest produkowanych w naturalnych procesach biologicznych. Dla przykładu wiele typów fitoplanktonu produkuje propionian siarczku metylu (ang. dimethyl sulphoniopropionate (DMSP)), który jest przekształcany na siarczek metylu (ang. DMS dimethyl sulphide). Obecność DMS w atmosferze prowadzi do zwiększonej ilości aerozoli siarczanowych. Podobnie aerozol soli morskiej jest związany z prędkością wiatru, czyli jest pochodzenia naturalnego z wyjątkiem sytuacji gdy prędkość wiatru jest modulowana poprzez antropogeniczne zmiany temperatury na Ziemi.

Zmiana stężenia dwutlenku węgla w atmosferze obserwowana na Hawajach. Pomiary C. D. Keelinga.

Antropogeniczne czynniki zmiany klimatu[edytuj | edytuj kod]

Information icon.svg Osobny artykuł: Globalne ocieplenie.

Gazy cieplarniane[edytuj | edytuj kod]

Najpowszechniejszym gazem cieplarnianym jest para wodna. Stężenie innego gazu cieplarnianego - dwutlenku węgla - jest oceniane obecnie na około 360ppm. Dwukrotny wzrost dwutlenku węgla spowoduje, na podstawie rekonstrukcji modeli numerycznych, zmianę temperatury ziemi o około 1 °C. Zmiana ta jest tylko w małym stopniu spowodowana bezpośrednim wpływem absorpcji promieniowania słonecznego przez dwutlenek węgla, a w dużym stopniu poprzez sprzężenie zwrotne temperatury z ilością chmur i pary wodnej w atmosferze.

Aerozole atmosferyczne (pyły zawieszone)[edytuj | edytuj kod]

Aerozole atmosferyczne (pyły zawieszone) dzielą się na cztery podstawowe grupy: (a) cząstki siarczanów, (b) pyły mineralne, (c) aerozol soli morskiej, oraz (d) pyły węglowo-grafitowe (sadza lub związki organiczne węgla). Część z aerozoli atmosferycznych tworzy się na prekursorach gazowych powodowanych działalnością człowieka. Tylko dwa typy pyłów zawieszonych są absorbujące: sadza i tlenki żelaza w drobinach piasku (pyły mineralne). Ostatnio absorbujące własności sadzy i pyłów mineralnych są bardzo intensywnie badane, ponieważ ich efekt jest podobny do efektu gazów cieplarnianych.

Zdjęcie satelitarne zanieczyszczeń spowodowanych pożarami w Chinach. Zdjęcie satelitarne zrobione za pomocą instrumentu MODIS. Zanieczyszczenia tego typu mogą modyfikować strukturę opadu atmosferycznego.

Chmury i efekty pośrednie[edytuj | edytuj kod]

Pomimo, że bezpośrednie czynniki zmian klimatu są powszechnie dyskutowane (takie jak gazy cieplarniane, czy sadze), to efekty pośrednie związane z tymi czynnikami maja często znacznie większe znaczenie klimatyczne. Dla przykładu, dwutlenek węgla pochłania około 2 watów na metr kwadratowy, podczas gdy chmury odbijają około 50% przychodzącego promieniowania słonecznego (czyli w tropikach w środku dnia około 500 watów na metr kwadratowy). Innymi słowy efekt chmur na zmianę klimatu może być kilkaset razy większy niż efekt cieplarniany dwutlenku węgla. Jednak nie należy z tego wyciągać wniosku, że gazy cieplarniane nie są istotne. Oddziałują one z atmosferą w sposób ciągły i mogą powodować zmianę pokrywy chmur. Innym przykładem efektu pośredniego jest zmiana wielkości i ilości kropli w chmurach w sytuacji gdy w atmosferze jest dużo małych pyłów zawieszonych (aerozoli). Ten efekt powoduje zmianę odbijalności chmur. To właśnie efekty pośrednie są jednymi z najważniejszych antropogenicznych czynników zmiany klimatu.

Przyczyny zmian klimatu[edytuj | edytuj kod]

Powody zmian klimatu można podzielić na dwie grupy: zmiany wywołane (a) czynnikami naturalnymi, (b) efektami antropogenicznymi (działalność człowieka). Wiele scenariuszy ogólnych zmian klimatu jest formułowanych w postaci prostych hipotez sprzężeń zwrotnych, w których zmiana jednego parametru powoduje zmianę innych parametrów. Przykładowe powody zmian klimatu są opisane poniżej. Istnieje wiele innych hipotez.

Efekt pary wodnej[edytuj | edytuj kod]

Efekt tęczówki w meteorologii to kontrowersyjny mechanizm klimatycznego sprzężenia zwrotnego wiążącego parę wodną, temperaturę oceanu, i pokrywę wysokich chmur w tropikach. Według tej hipotezy klimatycznej zwiększona temperatura oceanu związana z globalnym ociepleniem prowadzi do zmniejszenia pokrywy chmur w atmosferze tropikalnej. W związku z tym powierzchnia ziemi może wyemitować więcej energii cieplnej - co prowadzi do oziębienia. Zwiększona ilość pary wodnej, w tej hipotezie, prowadzi do stabilizacji klimatu. Nazwa tęczówka jest analogią do fizjologii oka, którego tęczówka może się zwężać lub rozszerzać regulując ilość dochodzącego światła.

Gazy cieplarniane[edytuj | edytuj kod]

Najpowszechniejszym czynnikiem wywołującym efekt cieplarniany jest absorpcja promieniowania podczerwonego przez gazy cieplarniane. Gazy te absorbują promienie odbite od powierzchni Ziemi przez co zwiększają temperaturę troposfery, co doprowadza do wzrostu temperatury. Bezpośredni efekt absorpcji promieniowania ziemskiego przez dwutlenek węgla jest mały. Jednak efekty wtórne związane ze zwiększoną ilością pary wodnej w atmosferze (ze względu na większą temperaturę troposfery) mogą spowodować zmianę w pokrywie chmur i w efekcie znacznie większe zmiany klimatyczne.

Efekt motyla[edytuj | edytuj kod]

Hipoteza wpływu skrzydeł motyla jest jedną z najbardziej znanych hipotez zmian klimatu i pogody. Jest to hipoteza mówiąca o telekonekcjach (oddziaływania na odległość) pomiędzy zjawiskami pozornie nie związanymi ze sobą. W szczególności uważa się, że małe lokalne zaburzenie w przepływie powietrza może powodować duże zaburzenie przepływu w znacznej odległości od początkowego zaburzenia. Hipoteza ta tłumaczy, dlaczego zjawiska pogodowe są trudne do prognozowania. Ogólne modele numeryczne cyrkulacji ziemskiej są oczywiście podatne na tego typu błędy. Wobec tego przeprowadza się obliczenia dla wiązek (kilkunastu) zbliżonych sytuacji, a średnia z wyników opisuje klimat. Patrz też Edward Lorenz.

Teoria CLAW[edytuj | edytuj kod]

W 1987 Charlson, Lovelock, Andreae oraz Warren zaproponowali, że wzrastająca temperatura Ziemi doprowadzi do rozwoju większej ilości fitoplanktonu. Wiele typów fitoplanktonu produkuje dimetylosulfoniopropionian (DMSP, (CH3)2S+CH2CH2COO), który jest przekształcany na siarczek dimetylu (DMS, (CH3)2S). Obecność DMS w atmosferze prowadzi do zwiększonej ilości aerozoli siarczanowych. Autorzy zakładają, że aerozole siarczanowe nad oceanami służą jako jądra kondensacji chmur. Chmury zwiększają ilość promieniowania słonecznego odbitego co powoduje zmniejszenie temperatury powierzchni Ziemi. Hipoteza CLAW jest przykładem (ujemnego) sprzężenia zwrotnego zjawisk klimatycznych. Modele ogólnej cyrkulacji atmosfery mogą być używane do testów hipotezy CLAW. Obecnie coraz większą uwagę zwraca się na sprzężenia zwrotne pomiędzy zmiennymi atmosferycznymi i innymi parametrami otoczenia (np. biologia morza, jak w przypadku hipotezy CLAW).

Teoria termostatu tropikalnego[edytuj | edytuj kod]

Jedną z hipotez ogólnych zmian klimatu jest oddziaływanie chmur lodowych typu cirrostratus i ich wpływ na regulacje temperatury oceanu w atmosferze tropikalnej. Obserwuje się, że w tropikach temperatura oceanu prawie nigdy nie przekracza pewnej granicznej temperatury. Teoria kontroli temperatury oceanu w tropikach zakłada, że zwiększona temperatura oceanu powoduje powstawanie najpierw wypiętrzonych chmur cumulus, a potem rozległych chmur cirrus. Chmury te odbijają promieniowanie słoneczne dochodzące do Ziemi i zmniejszają jej temperaturę. Jest to przykład ujemnego sprzężenia zwrotnego. Hipotezę tę opublikował w 1993 Ramanathan i Collins i była ona następnie badana w eksperymencie CEPEX.

Aerozole[edytuj | edytuj kod]

Hipoteza oziębiającego wpływu aerozoli atmosferycznych (pyłów zawieszonych) związana jest z ich własnościami odbijania promieniowania słonecznego z powrotem w przestrzeń kosmiczną. Przez wiele lat myślano o aerozolach (czyli cząstkach siarczanów, pyłach mineralnych, aerozolu soli morskiej) jako o cząstkach głównie odbijających. Obecnie coraz częściej bada się rolę aerozoli związków węglowo-grafitowych (sadza), które są w stanie absorbować promieniowanie atmosferyczne. Żeby rozważyć ten scenariusz sprzężenia zwrotnego, ogólne numeryczne modele cyrkulacji atmosfery muszą uwzględniać procesy zmian chemicznych atmosfery i emisję (powstawanie) i transport pyłów zawieszonych.

Cyklony tropikalne[edytuj | edytuj kod]

Pod koniec 2005 roku duży rozgłos zyskały dwie prace pokazujące, że wzrastająca temperatura oceanów powoduje zwiększenie intensywności cyklonów tropikalnych[4]. Prace te spotkały się z dużym zainteresowaniem, ponieważ zostały opublikowane po tym, jak Nowy Orlean został zatopiony przez huragan Katrina. Przeciw tej hipotezie wystąpił m.in. William Gray.

Georeaktor[edytuj | edytuj kod]

Według jednej z teorii, w jądrze Ziemi znajdują się duże ilości pierwiastków promieniotwórczych[5], zwłaszcza izotopu Uranu U238, który w wyniku specyficznych warunków panujących we wnętrzu Ziemi wytwarzałby radioaktywny pluton. Reakcje rozszczepienia plutonu dostarczają energię cieplną przez okres kilkunastu tysięcy lat, po czym reaktor ulega zatruciu produktami rozpadu i reakcja ustaje. Następnie przez okres około 100 tysięcy lat w wyniku dyfuzji do powierzchni jądra zewnętrznego środowisko takiego reaktora oczyszcza się i powstaje dodatkowy pluton z izotopu uranu. W ten sposób dzięki powielaniu paliwa powstaje cykl powodujący okresowe zlodowacenia.

Zobacz też[edytuj | edytuj kod]

Przypisy

  1. Bellrock.org.uk "The Year without a Summer"
  2. J.D.Post "The Last Great Subsistence Crisis in the Western World", The Johns Hopkins University Press, Baltimore 1977
  3. Historical CO2 Records from the Law Dome DE08, DE08-2, and DSS Ice Cores
  4. Webster PJ., Holland GJ., Curry JA., Chang HR. Changes in tropical cyclone number, duration, and intensity in a warming environment.. „Science”. 309. (5742), s. 1844-6, 2005. doi:10.1126/science.1116448. PMID 16166514. 
  5. Tomasz Rożek. Spacer po jądrowej eksplozji. „Wiedza i Życie”, grudzień 2006. 

Linki zewnętrzne[edytuj | edytuj kod]