Koenzym A

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Struktura koenzymu A: 1: (3'-fosforyboza lub rybozo-3-fosforan i adenina) - adenozyna 2: pirofosforan; 1+2: 3'β-fosforan ADP 3: kwas pantoinowy, kwas dihydroksy-dimetylo-butanowy 4: β-alanina 3+4: kwas pantotenowy 5: cysteamina, β-merkaptoetyloamina, merkaptoetanoloamina, tioetanoloamina 3+4+5: Panteteina

Koenzym A (w skrócie CoA, czasem CoA∼SH w celu uwidocznienia niepodstawionej grupy tiolowej) - organiczny związek chemiczny powstający w organizmie z adenozynotrifosforanu, pantotenianu oraz cysteaminy, służący jako przenośnik grup acylowych. Cząsteczkę koenzymu A związaną z resztą acylową nazywa się acylokoenzymem A (acylo-CoA). Najważniejszym z takich połączeń jest acetylokoenzym A (acetylo-CoA).

Acylo-CoA i Acetylo-CoA[edytuj | edytuj kod]

Acylo-CoA czyli acylokoenzym A to połączenie koenzymu A z resztą acylową umożliwiające jej transport w organizmie. Przenosi on grupy acylowe o długości wahającej się między 2 a 24 węglami lub nawet dłuższe elementy. Acylo-CoA powstaje w wyniku acylowania grupy tiolowej CoA:

CoASH + RCOOH → CoAS~COR + H2O

Najważniejszym przykładem takiego połączenia jest acetylokoenzym A (acetyl-CoA), tzw. aktywny octan - produkt acetylowania koenzymu A, uczestniczący w wielu przemianach zachodzących w organizmie, np. w cyklu kwasu cytrynowego.

Acetylo-CoA odgrywa kluczową rolę w metabolizmie. Składa się z grupy acetylowej (-COCH3) związanej kowalencyjnie z koenzymem A. Jest on na przykład bezpośrednio wykorzystywany przez połączenie z kwasem szczawiooctowym do syntezy kwasu cytrynowego, który rozpoczyna cykl kwasu cytrynowego (kwasów trójkarboksylowych). W postaci aktywnego octanu kwas octowy łączy się także z choliną, tworząc acetylocholinę, lub z sulfonamidami, które przed wydaleniem ulegają acetylacji. Acetylokoenzym A odgrywa również ważną rolę w metabolizmie lipidów - jest prekursorem cholesterolu, a tym samym hormonów steroidowych[1].

Tworzenie acetylo-CoA w mitochondriach[edytuj | edytuj kod]

Pirogronian po wejściu do mitochondriów może ulec utlenieniu do CO2 i H2O (w cyklu kwasów trójkarboksylowych), bądź być wykorzystany do syntezy kwasów lub innych związków. Uprzednio jednak musi ulec utleniającej dekarboksylacji, tworząc "aktywny octan" - acetylo-CoA.

pirogronian + NAD+ + CoA → acetylo-CoA + NADH + H+ + CO2
ΔG°= -33,5 kJ (-8,0 kcal/mol)

Faktyczny mechanizm reakcji jest znacznie bardziej złożony. W katalizującym kompleksie uczestniczą trzy enzymy główne (dehydrogenaza pirogronianowa, transacylaza liponianowa, dehydrogenaza liponianowa), pięć koenzymów (pirofosforan tiaminy, kwas liponowy, NAD+, FAD, CoA) oraz dwa enzymy regulujące (kinaza i fosfataza dehydrogenazy pirogronianowej).

Przebieg procesu zależy od stanu energetycznego komórki. Przy wysokim stężeniu ATP dehydrogenaza pirogronianowa przy udziale odpowiedniej kinazy przechodzi w nieaktywną formę ufosforylowaną, dzięki czemu cały proces ulega zahamowaniu. Przy niskim stężeniu ATP, o wysokim ADP oraz Ca2+ następuje pod wpływem swoistej fosfatazy defosforylacja dehydrogenazy pirogronianowej, z utworzeniem formy aktywnej enzymu.

Proces utleniającej dekarboksylacji α-ketokwasów jest źródłem czterech wiązań wysokoenergetycznych. Trzy tworzone są podczas utleniania poprzez łańcuch oddechowy powstałego NADH. Czwarte, powstałe na poziomie substratu, zmagazynowane jest w postaci ~S-CoA. Przy dekarboksylacji pirogronianu wiązanie to nie jest źródłem ATP, jest jednak wykorzystywane w procesach syntezy. Proces utleniającej dekarboksylacji pirogronianu jest nieodwracalny.

Schemat oksydacyjnej dekarboksylacji pirogronianu zachodzącej w mitochondriach.

Przypisy

  1. H. Harper, V. Rodwell: Zarys chemii fizjologicznej. Wyd. II. Warszawa: Państwowy Zakład Wydawnictw Lekarskich, 1983, s. 976. ISBN 8320004993.

Bibliografia[edytuj | edytuj kod]

  • R. Murray, P. Mayes, V. Rodwell: Biochemia Harpera. Wyd. III. Warszawa: Wydawnictwo Lekarskie PZWL, 1995, s. 955. ISBN 832001798X.
  • Lubert Stryer: Biochemia. Wyd. IV. Warszawa: Wydawnictwo Naukowe PWN, 2003, s. 1132.