Gwiazda neutronowa

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Pulsar w Mgławicy Kraba

Gwiazda neutronowagwiazda zdegenerowana powstała w wyniku ewolucji gwiazd o dużych masach (~ 8–10 mas Słońca). Powstają podczas wybuchu supernowej (supernowe typu II lub Ib) lub kolapsu białego karła (supernowa typu Ia) w układach podwójnych. Materia składająca się na gwiazdy neutronowe jest niezwykle gęsta, przy średnicy 10–15 km gwiazdy tego typu mają masę od 1,4 do 2,5 mas Słońca. Łyżeczka materii neutronowej ma masę ok. 6 miliardów ton [1].

Odkrycie[edytuj | edytuj kod]

Istnienie gwiazd neutronowych zostało przewidziane teoretycznie w 1938 roku przez Lwa Landau oraz niezależnie w 1939 roku przez Waltera Baade'a i Fritza Zwicky'ego. Zwicky wysunął takie przypuszczenie już w 1934 roku, czyli dwa lata po odkryciu neutronu, wkrótce po eksperymentalnym stwierdzeniu istnienia neutronów we wtórnym promieniowaniu kosmicznym. Odkrycie pulsara przez Antony'ego Hewisha i Jocelyn Bell z Uniwersytetu Cambridge w 1967 roku potwierdziło istnienie gwiazd neutronowych.

Fizyka[edytuj | edytuj kod]

Pulsar Vela

Materia skorupy na powierzchni gwiazdy neutronowej składa się z jąder żelaza (Fe) i swobodnych elektronów. Duże ciśnienie podczas zapadania jądra supernowej oraz malejące odległości między jądrami i elektronami powodują, że te ostatnie łączą się z protonami podczas fazy zwanej neutronizacją materii, skutkiem czego powstaje ośrodek składający się głównie z neutronów. Gdy gęstość we wnętrzu gwiazdy przekroczy 4·1011 g/cm³, materia wygląda jak ciągły stan neutronów. Ten proces nazywany jest także ściekaniem neutronów.

Swobodne neutrony są nietrwałe i rozpadają się po 15 minutach; tzw. (rozpad β). Produktem rozpadu neutronu są: proton, elektron i antyneutrino:

n \rightarrow p + e^- + \bar {\nu}_e\,

z wyjątkiem neutrin wszystkie te cząstki są fermionami i podlegają statystyce Fermiego-Diraca, określającej sposób obsadzania stanów energetycznych, oraz zasadzie Pauliego, która stosuje się do wszystkich liczb kwantowych (a nie wyłącznie do spinu).

Gwiazdy neutronowe zawdzięczają nazwę dominującemu składnikowi, jakim są neutrony, ale zawierają również elektrony, protony i mezony. Istnienie takich obiektów wynika z równowagi między zapadaniem grawitacyjnym materii a ciśnieniem wytworzonym przez zdegenerowany gaz fermionowy neutronów, protonów i elektronów. Zdegenerowany gaz fermionowy podlega wciąż statystyce Fermiego-Diraca (a nie Boltzmanna), a ciśnienie nie znika, nawet gdy temperatura gwiazdy dąży do zera. Średnia gęstość waha się w granicach

\rho\sim 10^{14} - 10^{15}\ \operatorname {g}/ \operatorname {cm}^{3}

Gęstość materii w symetrycznych jądrach atomowych, w których (n_{n}=n_{p}\,) jest podobnego rzędu:

\rho\sim2,5 \cdot 10^{14} \ \operatorname {g}/\operatorname {cm}^{3}

Tak duża gęstość wynika jednak raczej z istnienia sił dwójkowania, które zapewniają większą trwałość jąder izotopów radioaktywnych.

W laboratorium nie wytworzono tak dużych gęstości. Nie jest znane równanie stanu gęstej materii jądra gwiazdy neutronowej. Do czasu odkrycia PSR J1614-2230 uważano, że w bardzo gęstym jądrze może zachodzić kondensacja kaonów, których sama obecność w gwieździe mogłaby modyfikować równanie stanu czy przejście fazowe do materii kwarkowej (gwiazdy dziwne), które dostarcza energii przemiany do materii gwiazdy, ale biorąc pod uwagę masę PSR J1614-2230 jest to mało prawdopodobne. Obiekt o masie PSR J1614-2230 (1,97 ± 0,04 M), zawierający materię dziwną, najprawdopodobniej zapadłby się w czarną dziurę, zanim powstałaby z niego gwiazda neutronowa[2][3].

Młoda, gorąca gwiazda neutronowa (gwiazda protoneutronowa) może pochłaniać w jądrze neutrina, dla których Ziemia jest prawie przezroczysta. Zwiększa to ciśnienie gwiazdy, jej rozmiar, ale prawdopodobnie zmniejsza także degenerację materii w gwieździe. Ucieczka neutrin z gwiazdy destabilizuje tę chwilową równowagę i mogłaby prowadzić do wybuchu supernowej, gdyby nie to, że brak tam niezdegenerowanej materii, która mogłaby napędzić falę uderzeniową, rozdmuchującą w klasycznych supernowych otoczkę progenitora.

Stwierdzono nagłe zmiany tempa rotacji gwiazd neutronowych, co zinterpretowano jako skutek zmiany momentu bezwładności cieczy neutronowej, wypełniającej wnętrze takiego obiektu. W pierwszej połowie lat osiemdziesiątych usiłowano wyjaśnić zjawisko, badając tzw. fale Tkaczenki.

Wnętrza gwiazd neutronowych nie są radioaktywne, natomiast na tempo rozpadów jąder w skorupie mogą mieć wpływ efekty relatywistyczne, wynikające z ogólnej teorii względności (w trakcie rozpadów radioaktywnych jądra tracą symetrię sferyczną). Przypuszcza się, że jądro gwiazdy neutronowej jest nadciekłe[1].

Budowa wewnętrzna[edytuj | edytuj kod]

Gwiazda neutronowa otoczona jest cienką atmosferą. Wyróżnia się cztery obszary samej gwiazdy:

  • skorupa (otoczka) zewnętrzna;
  • skorupa wewnętrzna;
  • jądro zewnętrzne;
  • jądro wewnętrzne.

Materia skorupy zewnętrznej składa się z jonów i elektronów, które są silnie zdegenerowane. W dolnej części tej warstwy, sięgającej kilkuset metrów, gęstości są na tyle wysokie, że występuje wyciek neutronów.

W skorupie wewnętrznej materia zbudowana jest z elektronów, swobodnych neutronów i jąder atomowych bogatych w neutrony. Wraz ze wzrostem gęstości zwiększa się udział swobodnych neutronów, zaś kształt jąder atomowych przestaje być sferyczny. Przy gęstości rzędu 1,5·1014g/cm3 na dnie skorupy wewnętrznej jądra atomowe znikają, a materia składa się ze swobodnych neutronów, protonów i elektronów. Grubość tej warstwy wynosi około 1 km.

W jądrze gwiazdy materia składa się już przede wszystkim z neutronów, z niewielką domieszką protonów, elektronów i mionów. Granica między jądrem zewnętrznym a wewnętrznym jest umownie określona gęstością około 5,5·1014g/cm3, powyżej której struktura materii nie jest już dokładnie określona równaniem stanu, wynikającym ze znanych praw fizyki jądrowej. Jądro wewnętrzne występuje w najbardziej masywnych gwiazdach neutronowych, podczas gdy w mało masywnych warstwa ta może nie być obecna[4].

Rozważa się kilka możliwości składu materii gęstej w wewnętrznym jądrze gwiazdy neutronowej i wynikające stąd równania stanu:

Teoretyczne modele budowy gwiazd neutronowych weryfikuje się obserwacyjnie, mając do dyspozycji tzw. krzywe chłodzenia, czyli zmiany temperatury powierzchniowej gwiazdy w funkcji czasu. W początkowym etapie swego życia gwiazda neutronowa chłodzi się dzięki emisji neutrin, zaś tempo ich produkcji silnie zależy od stanu materii w jądrze gwiazdy. Pojemność cieplna wnętrza gwiazdy i emisja neutrin zależy od tego, czy w jądrze występuje nadciekłość. Powierzchnia gwiazdy chłodzi się dzięki emisji fotonów z powierzchni, głównie w zakresie rentgenowskim. Przewodnictwo cieplne na powierzchni gwiazdy i jej temperatura zależą także od obecności pola magnetycznego oraz ewentualnej warstwy materii zaakreowanej z towarzysza, jeśli gwiazda znajduje się w układzie podwójnym.

Inną istotną informację daje wyznaczenia masy gwiazdy, ponieważ maksymalna dopuszczalna masa gwiazdy neutronowej zależy od równania stanu. W ogólności bardzo duża masa gwiazdy, 2-2,5 masy Słońca, wskazuje raczej na obecność w jej wnętrzu materii nukleonowej.

Zobacz też[edytuj | edytuj kod]

Przypisy

  1. 1,0 1,1 NASA'S Chandra Finds Superfluid in Neutron Star's Core (ang.). NASA, 2011-02-24. [dostęp 2011-02-24].
  2. Massive neutron star is exactly that
  3. A Survey of 56 Midlatitude EGRET Error Boxes for Radio Pulsars
  4. Yakovlev i Pethick, 2004, Annual Reviews of Astronomy and Astrophysics, 42, 169

Linki zewnętrzne[edytuj | edytuj kod]