Liczby pierwsze Ramanujana

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania

Liczby pierwsze Ramanujana - liczby pierwsze występujące w uogólnieniu postulatu Bertranda, sformułowanego w 1845 roku przez Josepha Bertranda, a dowiedzionego w 1850 przez Pafnucego Czebyszewa, i od tego czasu zwanego twierdzeniem Czebyszewa. Dowód ten niezależnie uzyskał w 1919 Srinivasa Ramanujan.

Interpretacja[edytuj | edytuj kod]

Rozpatrujemy liczbę liczb pierwszych znajdujących się w drugiej połowie odcinka (0,n], to znaczy liczbę liczb pierwszych w odcinku (n/2,n] liczba ta oczywiście zależy od n. Nazwijmy ją f(n). Wartość tę matematycy zapisują używając funkcji π jako f(n)=π(n)-π(n/2). Na przykład wartością f(9) będzie liczba liczb pierwszych w przedziale (4,5; 9]. w tym przedziale liczbami pierwszymi są liczby 5 i 7 (nie ma więcej), więc f(9)=2. Jak łatwo policzyć wartości funkcji f wynoszą:

  • f(1)=0
  • f(2)=1
  • f(3)=2
  • f(4)=1
  • f(5)=2
  • f(6)=1
  • f(7)=2
  • f(8)=2
  • f(9)=2
  • f(10)=1
  • f(11)=2
  • f(12)=2
  • f(13)=3
  • f(14)=2
  • f(15)=2
  • f(16)=2
  • f(17)=3


Funkcja f rośnie w punktach będących liczbami pierwszymi, a maleje w punktach parzystych postaci 2*p, gdzie p jest pierwsza.

Twierdzenie Czebyszewa mówi, że funkcja f(n) jest dodatnia dla parzystych liczb n.

Okazuje się, że funkcja f(n) zbiega do nieskończoności. To znaczy

dla dowolnego k istnieje takie m, że jeśli m\leq n to zachodzi nierówność k\leq f(n)

Najmniejszą liczbę m spełniającą powyższy warunek nazywamy k-tą liczbą Ramanujana. Na przykład: jeśli 11\leq t to 2\leq f(t) i zamiast liczby 11 nie możemy wstawić liczby od niej mniejszej. To oznacza, że drugą liczbą Ramanujana jest liczba 11. Funkcja f rośnie w punktach będących liczbami pierwszymi, czyli liczby Ramanujana są liczbami pierwszymi.

Początkowe elementy ciągu liczb pierwszych Ramanujana[edytuj | edytuj kod]

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 569, 571, 587, 593, 599, 601, 607, 641, 643, 647, 653, 659 ...