Echolokacja

Z Wikipedii, wolnej encyklopedii

Echolokacja – system określania położenia przeszkód lub poszukiwanych obiektów w otoczeniu z użyciem zjawiska echa akustycznego. Metoda stosowana przez niektóre zwierzęta (nietoperze, walenie, niektóre ryjówkowate, tenrekowate i ptaki) do nawigacji, wykrywania i chwytania zdobyczy oraz w komunikacji międzyosobniczej. Znane są również przypadki wykorzystania echolokacji przez ludzi, głównie niewidomych[1][2]. Urządzenie stosujące echolokację w nawigacji morskiej to echosonda lub sonar. Termin echolokacja wprowadził w 1944 Donald Griffin, amerykański zoolog zajmujący się badaniem nietoperzy. U nietoperzy występuje „klaskanie językiem” co wydaje echo, które jest odbierane potem przez uszy ssaka[3].

Zasada działania[edytuj | edytuj kod]

Animacja echolokacji delfina

Korzystający z echolokacji wytwarza krótkotrwały dźwięk o wysokiej częstotliwości, a następnie odbiera fale odbite od przeszkód. Na podstawie kierunku, czasu powrotu, natężenia powracającego dźwięku, określany jest kierunek, odległość i wielkość przeszkody. Niektóre zwierzęta (np. nietoperze) za pomocą echa drugiej harmonicznej są w stanie określić prędkość obiektu (na podstawie przesunięcia dopplerowskiego).

Walenie do wytworzenia dźwięku stosowanego w echolokacji używają trzech par symetrycznych worków powietrznych znajdujących się za szczęką. Są to licząc od nosa 2 worki podszczękowe, 2 worki dodatkowe oraz 2 worki przedsionkowe. Ukierunkowanie fali dźwiękowej jest możliwe dzięki asymetrycznemu kształtowi czaszki, który pomaga zatrzymać rozchodzące się w bok dźwięki i skierować je do melona znajdującego się z przodu głowy. Wyróżniane są dwa rodzaje echolokacji, z których jeden, o dźwiękach o wyższej częstotliwości jest bardzo czuły, jednak ma mniejszy zasięg. Natomiast dźwięki o niższej częstotliwości pozwalają na wielkoobszarowe skanowanie otoczenia[4].

Znaczenie częstotliwości[edytuj | edytuj kod]

Nietoperz polujący w nocy

Częstotliwość fali akustycznej jest istotnym parametrem w echolokacji z powodu zjawiska dyfrakcji fali. Wysoka częstotliwość fali oznacza mniejszą jej długość, a zdolność rozdzielcza, podobnie jak w optyce, jest tym większa im mniejsza jest długość fali. Dlatego zwierzęta przystosowały się z reguły do stosowania ultradźwięków, szczególnie te, dla których echolokacja jest podstawowym źródłem informacji o otoczeniu.

Istotny jest jeszcze jeden aspekt doboru częstotliwości użytej do echolokacji – korzystniejszym rozwiązaniem jest używanie dźwięków, których nie rejestrują potencjalne ofiary.

Z tabeli zamieszczonej poniżej wynika, że najwyższą rozdzielczość osiągają delfiny.

Przykładowe dane dotyczące zakresu dźwięków używanych
przez zwierzęta do echolokacji[5]
Grupa zwierząt Zakres emitowanych dźwięków
(kHz)
niektóre ptaki z rzędów jerzykowych i lelkowych 4-7
ryjówki 20-64
nietoperze 25-210
delfiny do 280

Echolokacja u nietoperzy[edytuj | edytuj kod]

Zdolność tę posiada 85% współczesnych nietoperzy (poza Megachiroptera)[6]. Zakres emitowanych sygnałów echolokacyjnych to 11 kHz u Euderma maculatum, do 212 kHz u Cloeotis percivali[7]. Ewolucja tego zmysłu wiąże się ze zmianami anatomicznymi:

James Holman (1830)

Na podstawie skamieniałości Onychonycteris finneyi ustalono, że echolokacja pojawiła się po opanowaniu umiejętności latania[6].

Echolokacja u ludzi[edytuj | edytuj kod]

Wielokrotnie stwierdzono możliwość wyuczenia osób niewidomych w lokalizacji obiektów znajdujących się w otoczeniu. Po emisji dźwięku (kląskanie/uderzanie językiem o podniebienie lub stukanie laską) osoba wsłuchuje się w echa dźwiękowe powstałe w wyniku zetknięcia się fali akustycznej z napotkanym obiektem i na tej podstawie obserwuje otoczenie. Laskami z metalowym okuciem posługiwał się np. Brytyjczyk James Holman (1786–1857) – znany niewidomy podróżnik i autor książek podróżniczych[a]. Badania wykonane z wykorzystaniem rezonansu magnetycznego w 2010 roku wykazały, że po treningu, umożliwiającym przekierowanie impulsów nerwowych z drogi słuchowej na wzrokową (zmiana „okablowania mózgu”; zob. konektom, neuroplastyczność), interpretacja wrażeń odbieranych przez narząd słuchu odbywa się dodatkowo w części mózgu związanej z przetwarzaniem wizualnym (zob. kora wzrokowa)[2][8]. Amerykański neuronaukowiec Paul Bach-y-Rita (1934–2006) potwierdził możliwość zastąpienia bodźców wzrokowych słuchowymi, obserwując rehabilitację ojca (Pedro Bach-y-Rita), który w 1958 roku przebył poważny zawał mózgu (uszkodzenie pnia mózgu)[2].

Uwagi[edytuj | edytuj kod]

  1. W końcu XIX w. polski okulista, Kazimierz Noiszewski (1859–1930) wynalazł urządzenie zwane elektroftalmem, umożliwiające niewidomym orientację dzięki sprawnemu słuchowi. W elektroftalmie sygnały świetlne były odbierane przez fotokomórkę i przekształcane w sygnały dźwiękowe (niewidomy korzystał ze zmysłu słuchu, lecz nie była to echolokacja).

Przypisy[edytuj | edytuj kod]

  1. Griffin, Donald R., Echos of Bats and Men, Anchor Press, 1959 (Science and Study Series, Seeing With Sound Waves), ang. opracowanie zawierające podstawy założeń echolokacji u ludzi, przy wykorzystaniu „kliknięć”.
  2. a b c Okablowanie i zmiany w instalacji. W: Sam Kean: Dziwne przypadki ludzkiego mózgu. Historie szaleństw i powrotów do zdrowia z neurochirurgami w roli głównej. Łódź: Wydawnictwo JK (Aha, Feeria), 2017, s. 91–121. ISBN 978-83-722-9668-9.
  3. Jerzy A. Chmurzyński: Donald R. Griffin. Strona internetowa Polskiego Towarzystwa Etologicznego. [dostęp 2008-12-12].
  4. Echolokacja. [dostęp 2012-08-08]. [zarchiwizowane z tego adresu (2013-04-02)].
  5. Tablice Biologiczne. praca zbiorowa pod redakcją W. Mizierskiego. Warszawa: Adamantan, 2004. ISBN 83-7350-059-6.
  6. a b Nancy B. Simmons. Jak uskrzydlały się ssaki. „Świat Nauki”. 1 (209), s. 50–57. Warszawa: Prószyński Media. ISSN 0867-6380. 
  7. M.B. Fenton, G.P. Bell, Recognition of Species of Insectivorous Bats by Their Echolocation Calls, „Journal of Mammalogy”, 62 (2), 1981, s. 233–243, DOI10.2307/1380701, ISSN 1545-1542, JSTOR1380701 [dostęp 2024-03-24] (ang.).
  8. Thaler, Lore, Arnott, Stephen R., Goodale, Melvyn A. Human Echolocation I. „Journal of Vision”. 10 (7), s. 1050–1050, 2010. 

Linki zewnętrzne[edytuj | edytuj kod]