Aksjomaty Zermela-Fraenkla

Z Wikipedii, wolnej encyklopedii
(Przekierowano z Aksjomaty Zermelo-Fraenkela)
Skocz do: nawigacja, szukaj

Aksjomaty Zermela[a]-Fraenkla[b], aksjomatyka Zermela-Fraenkla, w skrócie: aksjomaty(ka) ZF – powszechnie przyjmowany układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla.

Dodając do ZF aksjomat wyboru, lub zdanie mu równoważne, otrzymuje się teorię ZFC.

Historia[edytuj]

w 1908 roku Ernst Zermelo zaproponował pierwszy zestaw aksjomatów teorii mnogości: teorię mnogości Zermela. Ta aksjomatyczna teoria nie umożliwiała konstrukcji liczb porządkowych. Choć większość „zwykłej matematyki” można wyprowadzić bez ich używania, jednak liczby porządkowe są nieodzowne w większości badań teoriomnogościowych. Ponadto, jeden z aksjomatów Zermela odwoływał się do bliżej niewyjaśnionego pojęcia „określonej” właściwości. W 1922 roku Abraham Fraenkel i Thoralf Skolem zaproponowali, niezależnie, uściślenie pojęcia „określoności” właściwości jako takich, które mogą zostać sformułowane w rachunku predykatów z równością, w którym jedynym symbolem spoza logiki jest binarny predykat „należenia do”, oznaczany symbolem ∈. Również niezależnie od siebie, zaproponowali oni zastąpienie aksjomatu podzbiorów przez aksjomat zastępowania. Stosując wspomniany schemat oraz dodając do teorii mnogości Zermela aksjomat regularności, zaproponowany przez Zermela w 1930 roku, otrzymuje się teorię ZF. Dodając do ZF aksjomat wyboru, lub zdanie mu równoważne, otrzymuje się teorię ZFC.

Aksjomaty Zermela-Fraenkla[edytuj]

Aksjomat ekstensjonalności[edytuj]

 Główny artykuł: Aksjomat ekstensjonalności.
Jeżeli zbiory i mają te same elementy, to są identyczne:

Aksjomat zbioru pustego[edytuj]

 Główny artykuł: Aksjomat zbioru pustego.
Istnieje zbiór, który nie ma żadnego elementu:
Na mocy aksjomatu ekstensjonalności istnieje tylko jeden zbiór posiadający taką właściwość: zbiór pusty, oznaczany symbolem

Aksjomat podzbiorów[edytuj]

 Główny artykuł: Aksjomat podzbiorów.
Inne nazwy: aksjomat wyróżniania, aksjomat wycinania.
Dla każdego zbioru istnieje zbiór , złożony z tych i tylko tych elementów zbioru , które mają własność :
Aksjomat podzbiorów daje się wyprowadzić z aksjomatu zbioru pustego i aksjomatu zastępowania.

Aksjomat pary[edytuj]

 Główny artykuł: Aksjomat pary.
Dla dowolnych zbiorów i istnieje zbiór , którego elementami są dokładnie zbiory oraz :

Aksjomat sumy[edytuj]

 Główny artykuł: Aksjomat sumy.
Dla dowolnej rodziny zbiorów istnieje zbiór , do którego należą dokładnie te elementy , które należą do co najmniej jednego spośród zbiorów, które są elementami rodziny :

Aksjomat zbioru potęgowego[edytuj]

 Główny artykuł: Aksjomat zbioru potęgowego.
Dla każdego zbioru istnieje zbiór , którego elementami są dokładnie podzbiory zbioru :

Aksjomat nieskończoności[edytuj]

 Główny artykuł: Aksjomat nieskończoności.
Istnieje zbiór induktywny:
Istnieje wiele takich zbiorów.
Część wspólna wszystkich takich zbiorów jest najmniejszym zbiorem o tych właściwościach i określa zbiór liczb naturalnych.

Aksjomat zastępowania[edytuj]

 Główny artykuł: Aksjomat zastępowania.
Aksjomat podzbiorów jest jego słabszą wersją.
Jeżeli dla każdego istnieje dokładnie jeden , dla którego zachodzi , to dla dowolnego zbioru istnieje taki zbiór , że:
przy czym:

Aksjomat regularności[edytuj]

 Główny artykuł: Aksjomat regularności.
Inna nazwa: aksjomat ufundowania.
Każdy niepusty zbiór ma element rozłączny z :
Jest on niezależny od pozostałych aksjomatów. Rozważane są teorie, w których jako aksjomat przyjmuje się jego negację. Występujące w takich teoriach nieufundowane zbiory noszą nazwę hiperzbiorów.

Aksjomat wyboru[edytuj]

 Główny artykuł: Aksjomat wyboru.
Aksjomat wyboru nie należy do aksjomatyki ZF, ale dodanie go tworzy najpowszechniejsze jej rozszerzenie: ZFC.
Dla dowolnej rodziny zbiorów niepustych parami rozłącznych istnieje selektor (zbiór, do którego należy dokładnie jeden element z każdego zbioru należącego do rodziny).
przy czym:
Za pomocą pozostałych aksjomatów można udowodnić równoważność tego aksjomatu z lematem Kuratowskiego-Zorna oraz twierdzeniem, że w każdym zbiorze istnieje relacja dobrego porządku, a także z aksjomatem multiplikacji głoszącym, że dla dowolnej indeksowanej rodziny niepustych zbiorów istnieje funkcja wyboru
taka, że:
dla wszystkich .

Zobacz też[edytuj]

Uwagi

  1. także: Zermeli (w literaturze dominuje niezgodna z polskimi zasadami odmiany nazwisk forma Zermelo)
  2. także: Fraenkela

Bibliografia[edytuj]

  • Wojciech Guzicki, Piotr Zakrzewski: Wykłady ze wstępu do matematyki: wprowadzenie do teorii mnogości. Warszawa: PWN, 2005. ISBN 83-01-14415-7.
  • Agnieszka Wojciechowska: Elementy logiki i teorii mnogości. Warszawa: PWN, 1979. ISBN 83-01-00756-7.

Linki zewnętrzne[edytuj]