Przejdź do zawartości

H-nieskończoność

Z Wikipedii, wolnej encyklopedii

H-nieskończoność, H, sterowanie H – w teorii sterowania, termin odnoszący się do metod syntezy regulatorów, które pozwalają na uzyskanie krzepkości sterowania lub krzepkości stabilności w układach regulacji. W metodach tych problem sterowania definiuje się jako zadanie sterowania optymalnego, a następnie projektuje regulator, który może takie zadanie wykonać.

Wstęp

[edytuj | edytuj kod]

Termin H-nieskończoność pochodzi od nazwy przestrzeni matematycznej, w której zachodzi optymalizacja. H jest przestrzenią funkcji, o wartościach będących macierzami, które są analityczne i ograniczone w otwartej prawej stronie płaszczyzny zespolonej, zdefiniowanej nierównością norma H stanowi maksymalną wartość osobliwą tej funkcji w tej przestrzeni (można to zinterpretować jako maksymalne wzmocnienie w dowolnym kierunku i dla dowolnej częstotliwości; dla systemów jednowymiarowych, jest to maksymalna amplituda charakterystyki częstotliwościowej). Metody H-nieskończoność można wykorzystać do minimalizacji wpływu zaburzeń w układach zamkniętych (w układach regulacji z zamkniętą pętlą sprzężenia zwrotnego) – w zależności od sposobu sformułowania problemu, miara tego wpływu odnosi się do stabilności albo do sterowania.

Jednoczesna optymalizacja krzepkiego sterowania i krzepkiej stabilności jest trudna do uzyskania. Jedną z metod, która bliska jest uzyskania tego, jest metoda H-nieskończoność kształtująca pętlę (sprzężenia zwrotnego) układu. W metodzie tej stosuje się koncepcje klasycznej teorii sterowania w odniesieniu do wielowymiarowych charakterystyk częstotliwościowych, tak by uzyskać odpowiednio krzepkie sterowanie, a następnie optymalizuje się charakterystykę w pobliżu pasma przenoszenia układu, tak by osiągnąć odpowiednio krzepką stabilność. Syntezę regulatora H-nieskończoność można przeprowadzić za pomocą dostępnego na rynku odpowiedniego oprogramowania komercyjnego.

Zalety i wady

[edytuj | edytuj kod]

Metody H-nieskończoność mają tę przewagę nad metodami klasycznej teorii sterowania, że można je z łatwością zastosować do systemów wielowymiarowych ze sprzężeniami skrośnymi. Z drugiej jednak strony korzystanie z tych metod wymaga znajomości właściwych zagadnień matematyki, potrzebny jest też dobry model sterowanego układu. Duże znaczenie ma odpowiednie sformułowanie problemu, gdyż każdy regulator jaki powstanie w wyniku syntezy będzie optymalny tylko w sformułowanym sensie – niewłaściwa optymalizacja często zamiast polepszać jedynie pogarsza sterowanie. Ponadto ograniczenia nieliniowe, takie jak nasycenie, ogólnie rzecz biorąc, nie są odpowiednio traktowane.

Sformułowanie problemu

[edytuj | edytuj kod]

Po pierwsze proces musi zostać przedstawiony zgodnie ze standardową konfiguracją:

Obiekt ma dwa wejścia, egzogeniczne wejście które obejmuje sygnał wartości zadanej i zakłócenia, oraz sterowaną zmienną wyjściową Są też dwa wyjścia, sygnały uchybu które mają być zminimalizowane, i mierzona zmienna która ma być wykorzystana do sterowania systemem. Zmienna używana jest w do wyliczenia zmiennej sterowanej Wszystkie wymienione zmienne są wektorami, a i macierzami.

Można to wyrazić wzorami:

Można zatem zapisać zależność od jako:

zwaną dolną liniową transformacją ułamkową (gdzie indeks to skrót od ang. lower, czyli dolny) można wyrazić wzorem:

Celem projektu sterowania H jest odnalezienie regulatora takiego że będzie minimalizowane zgodnie z normą H. Taka sama definicja ma zastosowanie do projektu sterowania H2. Normę z nieskończonością dla macierzy transmitancji definiuje się następująco:

gdzie to maksimum wartości osobliwej macierzy

Osiągalna norma H-nieskończoność dla układu z zamkniętą pętlą (sprzężenia zwrotnego) dana jest macierzą gdzie układ jest dany w postaci Istnieje kilka dróg dojścia do sformułowania regulatora H:

Kształtowanie pętli H-nieskończoność

[edytuj | edytuj kod]

Kształtowanie pętli H-nieskończoność to metoda projektowania współczesnej teorii sterowania, która łączy tradycyjne, intuicyjne metody klasycznej teorii sterowania (takie jak całka wrażliwości Bode’go) z metodami optymalizującymi H-nieskończoność. Istota metody polega na tym, że najpierw opisuje się oczekiwane przebiegi charakterystyk i własności redukcji szumu poprzez rozważenie transmitancji w dziedzinie częstotliwości; tak „ukształtowaną” pętlę (sprzężenia zwrotnego) poddaje się następnie operacjom optymalizującym mającym na celu nadanie jej cech krzepkości. Nadawanie tych cech zwykle ma mały wpływ na niskie i wysokie częstotliwości, ale charakterystyka wokół przecięcia wzmocnienia jednostkowego (częstotliwość, przy której amplituda wzmocnienia wynosi 1 nazywa się częstotliwością wzmocnienia jednostkowego lub częstotliwością przecięcia – zob. też charakterystyka częstotliwościowa) jest tak dostosowywana, by zmaksymalizować zapas stabilności układu. Metoda ta została z powodzeniem zaimplementowana w rozwiązaniach przemysłowych[1][2].

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. R. Hyde, K. Glover, G.T. Shanks, „Computing and Control Engineering Journal”, 1995, 6(1):11–16.
  2. D.J. Auger, S. Crawshaw, S.L. Hall, Proceedings of the UKACC International Conference on Control, 2008.