Twierdzenie o bezwładności form kwadratowych
Twierdzenie o bezwładności form kwadratowych (zwane czasem twierdzeniem Sylvestera-Jacobiego) opisuje niezmienniczość liczby współczynników dodatnich i ujemnych formy kwadratowej ze względu na sprowadzanie jej do różnych postaci kanonicznych.
Twierdzenie
[edytuj | edytuj kod]Jeśli sprowadza się rzeczywistą formę kwadratową do dwóch różnych postaci kanonicznych za pomocą nieosobliwych przekształceń rzeczywistych, to obie formy kanoniczne mają te same liczby współczynników dodatnich i współczynników ujemnych.
Przestrzenie ortogonalne
[edytuj | edytuj kod]Twierdzenie o bezwładności form kwadratowych można wypowiedzieć w języku przestrzeni ortogonalnych.
Załóżmy, że jest przestrzenią ortogonalną nad ciałem liczb rzeczywistych oraz
są dwiema bazami prostopadłymi przestrzeni Wówczas,
gdzie:
Sygnatura funkcjonału
[edytuj | edytuj kod]Liczbę
nazywa się sygnaturą funkcjonału (bądź przestrzeni – oznacza się zwykle ją wówczas symbolem ).
Zobacz też
[edytuj | edytuj kod]Bibliografia
[edytuj | edytuj kod]- Andrzej Mostowski, Marceli Stark: Elementy algebry wyższej. Warszawa: Państwowe Wydawnictwo Naukowe, 1975.
Linki zewnętrzne
[edytuj | edytuj kod]- Law of inertia (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org, [dostęp 2023-06-18].