Równania Friedmana
Równania Friedmana – podstawowe równania kosmologii relatywistycznej. Określają one ewolucję wszechświata przy założeniu jego przestrzennej jednorodności i izotropowości (braku wyróżnionego miejsca i kierunku). Zostały po raz pierwszy wyprowadzone przez rosyjskiego uczonego Aleksandra Friedmana w 1922 roku z równań pola Einsteina dla płynu o danym ciśnieniu i gęstości z metryką zwaną obecnie metryką Friedmana-Lemaître’a-Robertsona-Walkera.
Postać równań
[edytuj | edytuj kod]Istnieją dwa niezależne równania Friedmana. Pierwsze z nich określa zmiany pierwszej pochodnej czynnika skali w zależności od czasu kosmicznego
gdzie:
- to parametr Hubble’a,
- – newtonowska stała grawitacji,
- – krzywizna przestrzeni,
- – prędkość światła w próżni,
- – stała kosmologiczna.
Drugie z równań Friedmana, zwane również równaniem na przyspieszenie, zawiera drugą pochodną czynnika skali po czasie kosmicznym:
Parametr Hubble’a zmienia się w czasie, a jego obecna wartość, zwana jest stałą Hubble’a i pojawia się jako współczynnik proporcjonalności w prawie Hubble’a. Natomiast rosnący w czasie czynnik skali (na co wskazują obserwacje astronomiczne) oznacza ekspansję wszechświata.
Z równań Friedmana można wyeliminować ciśnienie, jeżeli zna się równanie stanu rozważanego płynu, czyli związek między jego gęstością a ciśnieniem. Natomiast wprowadzenie parametru gęstości gdzie jest gęstością krytyczną, pozwala na przeformułowanie pierwszego równania Friedmana do ogólnej postaci:
Wielkości i są odpowiednio parametrami gęstości promieniowania, materii i stałej kosmologicznej, zaś jest „parametrem krzywizny”. Znajomość tych parametrów, a więc znajomość składu wszechświata, pozwala wnioskować o jego przeszłej i przyszłej ewolucji, oczywiście w przypadku, gdy spełnione jest założenie o jego jednorodności i izotropowości (lub też jest ono dobrym przybliżeniem).