Twierdzenie Ehrenfesta

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Twierdzenie Ehrenfesta – podaje w jaki sposób zmieniają się w czasie wartości oczekiwane operatora położenia i pędu cząstki w mechanice kwantowej. Okazuje się, że zmiany te zachodzą w sposób analogiczny do mechaniki klasycznej.

Twierdzenie to zostało sformułowane i udowodnione przez Paula Ehrenfesta.

Wyprowadzenie wzoru[edytuj | edytuj kod]

(1) Przyjmujemy obraz Schrödingera, tj. zakładamy, że wektory stanu opisujące układy fizyczne zależą od czasu, ale operatory (obserwable) nie zależą od czasu. Szybkość zmian wartości oczekiwanej operatora wyraża wzór:

Ponieważ operator nie zależy jawnie od czasu, to wzór powyższy upraszcza się

Poniżej wyznaczone zostaną szybkości zmian w czasie wartości oczekiwanych operatorów pędu i położenia cząstki, której stan kwantowy jest opisany wektorem .

(2) Wartości oczekiwana operatora pędu

Jeżeli za operator wstawi się operator pędu, to otrzyma się

Obliczając komutator otrzyma się:

Ponieważ:

oraz

to otrzyma się

(3) Wartości oczekiwana operatora położenia

Jeżeli za operator wstawi się operator położenia, to otrzyma się

Ponieważ:

oraz

to

I ostatecznie mamy:

(4) Reasumując:

Dwa ostatnie wzory stanowią treść twierdzenia Ehrenfesta. Wartości oczekiwane oblicza się bądź dla odpowiednio dużego zespołu cząstek bądź odpowiednio długich czasów.

Twierdzenie Ehrenfesta jest ścisłym sformułowaniem intuicyjnej, wcześniej sformułowanej przez Bohra zasady korespondencji, która głosi, iż:

Dla układ kwantowy podlega równaniom ruchu mechaniki klasycznej.

Twierdzenie Ehrenfesta pokazuje, że dla układów fizycznych spełniających szczególne wymagania (tzw. układów klasycznych) prawa mechaniki kantowej przechodzą w prawa mechaniki klasycznej w tym sensie, że:

  1. wartości oczekiwane operatorów kwantowomechanicznych odpowiadają wartościom wielkości fizycznych mechaniki klasycznej
  2. zmiana w czasie wartości oczekiwanych operatorów kwantowomechanicznych jest opisana prawami niemal identycznymi jak prawa mechaniki klasycznej, wyrażające zależności od czasu odpowiadających tym operatorom wielkości fizycznych.

Wnioski z twierdzenia Ehrenfesta:

  1. prawa mechaniki klasycznej są szczególnym przypadkiem mechaniki kwantowej
  2. istnieją układy fizyczne, które nie stosują się do praw mechaniki klasycznej

Przykładem poprawności twierdzenia Ehrenfesta jest paczka trojańska, dla której trajektoria wartości oczekiwanej operatorów pędu i położenia w przestrzeni fazowej jest kołem, a zlokalizowany gaussowski pakiet falowy również porusza się po okręgu.

Uogólnione twierdzenie Ehrenfesta[edytuj | edytuj kod]

Uogólnione twierdzenie Ehrenfesta, podane i udowodnione przez Heisenberga, łączy szybkość zmian w czasie wartości oczekiwanej dowolnego operatora z wartością oczekiwaną komutatora tego operatora z hamiltonianem układu. Głosi ono, że

gdzie jest pewnym operatorem kwantowomechanicznym, zaś oznacza wartością oczekiwaną danego wyrażenia operatorowego. Uogólnione twierdzenie Ehrenfesta stanowi odpowiednik twierdzenia Liouville’a mechaniki klasycznej.

Zobacz też[edytuj | edytuj kod]

Bibliografia[edytuj | edytuj kod]

  • B. Średniawa, Mechanika kwantowa, PWN, Warszawa 1978, str. 64-65.
  • Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe, Quantum Mechanics 1, Wiley J., 2006, ​ISBN 978-0471569527​, str. 240-244 oraz 312-314.