Macierz transponowana

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Niniejszy artykuł jest częścią cyklu macierze.
Macierz ikona.png


Niektóre typy macierzy
Cechy niezależne od bazy:
macierz nieosobliwa
macierz osobliwa
macierz zerowa
macierz nilpotentna
macierz idempotentna

macierz ortogonalna
macierz symetryczna
macierz dodatnio określona
macierz antysymetryczna

macierz unitarna
macierz hermitowska

Cechy zależne od bazy:
macierz jednostkowa
macierz skalarna
macierz diagonalna
macierz trójkątna
macierz schodkowa
macierz klatkowa
macierz wstęgowa

macierz elementarna
macierz rzadka


Operacje na macierzach
operacje elementarne

mnożenie przez skalar
dodawanie i odejmowanie

mnożenie macierzy
odwracanie macierzy

transpozycja macierzy
sprzężenie macierzy
macierz dopełnień algebraicznych
macierz dołączona

diagonalizacja
postać Jordana


Niezmienniki
rząd macierzy
wyznacznik macierzy
ślad macierzy
minor macierzy
widmo macierzy
wielomian charakterystyczny

edytuj ten szablon

Macierz transponowana (przestawiona) macierzy – macierz która powstaje z danej macierzy (w ogólności prostokątnej, w szczególności jednowierszowej czy o jednej kolumnie) poprzez zamianę jej wierszy na kolumny i kolumn na wiersze[1]. Operację tworzenia macierzy transponowanej nazywa się transpozycją (przestawianiem).

Jeżeli macierz ma wyrazy (element macierzy znajdujący się na przecięciu -tego wiersza i -tej kolumny), a macierz transponowana ma wyrazy to zachodzi związek

Przykład[edytuj | edytuj kod]

(1) Transponować można macierz w ogólności prostokątną, np. gdy

to macierz transponowana ma postać:

(2) W szczególności wektor kolumnowy przechodzi w wektor wierszowy, np. gdy

to

Transpozycja macierzy symetrycznej[edytuj | edytuj kod]

Macierz symetryczna[2] – macierz ta ma identyczne wyrazy leżące symetrycznie względem swojej przekątnej głównej, np.

Transpozycja macierzy symetrycznej jest równa tej macierzy, tj.

Własności operacji transponowania[edytuj | edytuj kod]

Tw. 1. Niech wówczas:

  • [3],

Tw. 2. Jeśli to:

Tw. 3. Dla macierzy kwadratowej: Transpozycja nie zmienia wyznacznika ani śladu macierzy, tj.

Zobacz też[edytuj | edytuj kod]

Przypisy[edytuj | edytuj kod]

  1. g, Transpose, chortle.ccsu.edu [dostęp 2018-03-17] (ang.).
  2. g, Symmetric, chortle.ccsu.edu [dostęp 2018-03-17] (ang.).
  3. g, A Rule for Transpose, chortle.ccsu.edu [dostęp 2018-03-17] (ang.).

Bibliografia[edytuj | edytuj kod]

  • H. Guściora, M. Sadowski, Repetytorium z algebry liniowej, PWN, Warszawa 1979.