Postać Jordana

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Niniejszy artykuł jest częścią cyklu macierze.
Macierz ikona.png


Niektóre typy macierzy
Cechy niezależne od bazy:
macierz nieosobliwa
macierz osobliwa
macierz zerowa
macierz nilpotentna
macierz idempotentna

macierz ortogonalna
macierz symetryczna
macierz dodatnio określona
macierz antysymetryczna

macierz unitarna
macierz hermitowska

Cechy zależne od bazy:
macierz jednostkowa
macierz skalarna
macierz diagonalna
macierz trójkątna
macierz schodkowa
macierz klatkowa
macierz wstęgowa

macierz elementarna
macierz rzadka


Operacje na macierzach
operacje elementarne

mnożenie przez skalar
dodawanie i odejmowanie

mnożenie macierzy
odwracanie macierzy

transpozycja macierzy
sprzężenie macierzy
macierz dopełnień algebraicznych
macierz dołączona

diagonalizacja
postać Jordana


Inne zagadnienia
rząd macierzy
wyznacznik macierzy
ślad macierzy
minor macierzy

widmo macierzy
wielomian charakterystyczny

edytuj ten szablon

Postać Jordana macierzy – macierz w specjalnej, prawie przekątniowej, postaci związana z daną macierzą przez przejście odpowiadające zmianie bazy. Nazwa była wprowadzona dla uhonorowania francuskiego matematyka Camille Jordana.

Postać Jordana kwadratowej macierzy A to przedstawienie

gdzie

  • A – dana macierz,
  • P – pewna macierz nieosobliwa której niektórymi kolumnami są wektory własne macierzy A,
  • J – szukana macierz Jordana.

Żądamy, by macierz Jordana była w szczególnej postaci. Na diagonali miała klatki (zwane klatkami Jordana), czyli

.

Zaś każda klatka Jordana ma daną wartość własną na diagonali i liczbę 1 ponad nią.


Każdej klatce Jordana odpowiada dokładnie jeden wektor własny, ale może istnieć kilka klatek Jordana o tej samej wartości własnej.

Wymiar pojedynczej klatki jest z przedziału , gdzie N to wymiar macierzy A.

Macierz Jordana to macierz trójkątna górna. Można równie dobrze umówić się, że macierze Jordana są dolnotrójkątne (jedynki są poniżej diagonali), jednak historycznie przyjęto używać macierzy górnotrójkątnych.

Rozkład Jordana[edytuj]

Rozkład Jordana to przedstawienie macierzy A w postaci iloczynu trzech macierzy

przy oznaczeniach jak z początku artykułu.

Twierdzenie Jordana mówi, że nad ciałem algebraicznie domkniętym taki rozkład zawsze istnieje.

Zastosowania[edytuj]

Podobieństwo[edytuj]

Dwie macierze A i Bpodobne wtedy i tylko wtedy, gdy mają taką samą postać Jordana. Pokażemy implikację w jedną stronę.

co daje

Potęgowanie macierzy[edytuj]

Stosunkowo łatwo jest podnosić do potęgi macierz kwadratową w postaci Jordana.

Twierdzenie[edytuj]

Twierdzenie Jordana - twierdzenie algebry liniowej o istotnym znaczeniu w teorii równań różniczkowych. Sformułowane przez francuskiego matematyka Camille Jordana.

Załóżmy, że jest skończeniewymiarową przestrzenią liniową nad ciałem algebraicznie domkniętym (w szczególności, ciałem liczb zespolonych) oraz jest endomorfizmem tej przestrzeni. Wówczas istnieje baza przestrzeni w której ma macierz w postaci macierzy klatkowej

gdzie każda macierz jest postaci

Macierz nazywamy klatką Jordana. Elementy diagonalne są wartościami własnymi endomorfizmu . Liczba wystąpień danej liczby na przekątnej macierzy nazywana jest krotnością wartości własnej .


Zobacz też[edytuj]

Bibliografia[edytuj]

  • Wykłady z algebry liniowej II: przestrzenie afiniczne i euklidesowe, T. Koźniewski, Uniwersytet Warszawski, Warszawa, 2006