Diagonalizacja

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Niniejszy artykuł jest częścią cyklu macierze.
Macierz ikona.png


Niektóre typy macierzy
Cechy niezależne od bazy:
macierz nieosobliwa
macierz osobliwa
macierz zerowa
macierz nilpotentna
macierz idempotentna

macierz ortogonalna
macierz symetryczna
macierz dodatnio określona
macierz antysymetryczna

macierz unitarna
macierz hermitowska

Cechy zależne od bazy:
macierz jednostkowa
macierz skalarna
macierz diagonalna
macierz trójkątna
macierz schodkowa
macierz klatkowa
macierz wstęgowa

macierz elementarna
macierz rzadka


Operacje na macierzach
operacje elementarne

mnożenie przez skalar
dodawanie i odejmowanie

mnożenie macierzy
odwracanie macierzy

transpozycja macierzy
sprzężenie macierzy
macierz dopełnień algebraicznych
macierz dołączona

diagonalizacja
postać Jordana


Inne zagadnienia
rząd macierzy
wyznacznik macierzy
ślad macierzy
minor macierzy

widmo macierzy
wielomian charakterystyczny

edytuj ten szablon

Diagonalizacja - rozkład macierzy kwadratowej na iloczyn macierzy :

gdzie jest macierzą diagonalną.

Macierz jest nazywana macierzą przejścia.

Współczynniki na głównej przekątnej macierzy diagonalnej są równe kolejnym wartościom własnym macierzy , z kolei kolumny macierzy stanowią kolejne wektory własne macierzy .

Macierze kwadratowe, które można przedstawić w postaci diagonalnej, nazywamy diagonalizowalnymi.

Rozkład Jordana i rozkład wartości osobliwych to dwa różne uogólnienia diagonalizacji, działające dla dowolnych macierzy.

Zastosowanie[edytuj]

Diagonalizacja ułatwia potęgowanie macierzy:

,

gdzie:

  • , gdzie jest macierzą jednostkową stopnia ,
  • są wartościami własnymi macierzy ,
  • jest macierzą diagonalną o współczynnikach będących potęgami kolejnych wartości własnych.

Własności[edytuj]

Macierze symetryczne i hermitowskie są diagonalizowalne. Ogólniej, macierze normalne są diagonalizowalne unitarnie - tzn. istnieje dla nich unitarna macierz przejścia dla rozkładu diagonalnego.

W szczególności:

Jeśli dla pewnej macierzy mamy rozkład diagonalny

wówczas:

Diagonalizacja Jacobiego[edytuj]

Załóżmy, że jest przestrzenią ortogonalną oraz jest bazą taką, że dla każdego zachodzi (wyznacznik Grama). Wtedy istnieje baza prostopadła przestrzeni , w której ma macierz:

, gdzie dla

Zobacz też[edytuj]