Paradoks Banacha-Tarskiego

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Paradoks Banacha-Tarskiego: Kula może być pocięta na skończenie wiele kawałków, z których można złożyć dwie kule identyczne z kulą wyjściową

Paradoks Banacha-Tarskiego (Hausdorffa-Banacha-Tarskiego)paradoksalne twierdzenie teorii mnogości sformułowane i udowodnione przez polskich matematyków Stefana Banacha i Alfreda Tarskiego w roku 1924.

Pozorny paradoks polega na tym, że korzystając z pewnika wyboru można zwykłą trójwymiarową kulę „rozciąć” na skończoną liczbę części, a następnie używając wyłącznie obrotów i translacji złożyć dwie kule o takich samych promieniach jak promień kuli wyjściowej. Nie jest to jednak istotna sprzeczność, jako że części tego podziału nie są mierzalne w sensie Lebesgue’a (nie da się określić ich objętości), więc naturalna argumentacja oparta na intuicjach związanych z objętością przedmiotów w świecie rzeczywistym nie ma tu zastosowania.

Podobnie nieintuicyjnym wydaje się wariant twierdzenia Banacha-Tarskiego, z którego wynika, że ziarnko grochu może być podzielone na skończenie wiele części, z których (przez izometrie) można złożyć kulę wielkości Słońca. I tutaj nie ma żadnej sprzeczności – kawałki podziału są niemierzalne (należy zauważyć, że podział fizycznego ziarnka grochu na niemierzalne części jest niemożliwy w świecie rzeczywistym).

Twierdzenie Banacha-Tarskiego i pokrewne wyniki mają duże znaczenie we współczesnej matematyce, jako że wskazują one ograniczenia na możliwe rozszerzenia miary Lebesgue’a niezmiennicze względem pewnych przekształceń przestrzeni euklidesowych[1].

Warto tu zacytować motto z jednej z książek dotyczących paradoksu Banacha-Tarskiego[1]:

Delijczycy: W jaki sposób możemy uwolnić się od zarazy?
Wyrocznia delficka: Powiększcie dwukrotnie objętość ołtarza Apolla, zachowując jego kształt sześcianu!
Banach i Tarski: Czy możemy użyć aksjomatu wyboru?

Rys historyczny[edytuj | edytuj kod]

Wstępne przykłady[edytuj | edytuj kod]

  • W zasadzie już Galileusz[8] zauważył, że zbiór liczb naturalnych może być podzielony na dwie części z których każda może być odwzorowana w sposób wzajemnie jednoznaczny na cały zbiór Rozważmy na przykład zbiór liczb parzystych i jego dopełnienie, czyli zbiór liczb nieparzystych Funkcja jest bijekcją z na oraz funkcja jest bijekcją z na
  • Każde dwa nietrywialne odcinki na prostej rzeczywistejrównoliczne (w ZF) i funkcja ustalająca równoliczność jest bardzo porządna (np. w przypadku dwóch przedziałów otwartych może to być funkcja liniowa). Zatem każdy nietrywialny odcinek może być podzielony na dwie rozłączne części (odcinki) i każda z tych części może być odwzorowana w sposób wzajemnie jednoznaczny na odcinek wyjściowy. Podobna obserwacja ma miejsce w odniesieniu do prostokątów, prostopadłościanów i wielu innych figur geometrycznych.
  • Rozważmy zbiór Vitalego na okręgu jednostkowym. Najwygodniej jest ten zbiór opisać, jeśli zinterpretujemy punkty płaszczyzny jako liczby zespolone. Nasz okrąg to zbiór Określmy na tym zbiorze relację równoważności przez warunek
wtedy i tylko wtedy gdy jest liczbą wymierną.
Zakładając aksjomat wyboru, możemy znaleźć zbiór który jest selektorem klas abstrakcji relacji Zatem zbiór spełnia następujące dwa warunki:
(a) oraz
(b)
Przedstawmy zbiór liczb wymiernych w przedziale jako sumę dwóch zbiorów nieskończonych. Wówczas każdy ze zbiorów jest równoliczny ze zbiorem a więc możemy wybrać funkcje wzajemnie jednoznaczne i Rozważmy zbiory
i
Wówczas oraz funkcje
i
są bijekcjami.

W powyższych przykładach użyte funkcje wzajemnie jednoznaczne, nawet jeśli są bardzo porządne, jednak nie zachowują odległości punktów (czyli nie są izometriami). Zatem przykłady te nie wzbudzają żadnego zdziwienia: odpowiednie zbiory są powiększone/rozdmuchane przez odpowiadające im funkcje. Można jednak zapytać, czy istnieją podobne rozkłady z dodatkową własnością, taką że funkcje ustalające równoliczność kawałków z wyjściowym zbiorem są izometriami (ze względu na metryki naturalne).

  • Zbiór Vitalego, dyskutowany wcześniej, pozwala zbudować przykład podziału na przeliczalnie wiele części, tak że z dowolnych nieskończenie wielu kawałków można złożyć okrąg wyjściowy, używając tylko obrotów. Niech zbiór będzie wybrany jak powyżej. Dla połóżmy Wówczas jest przeliczalną rodziną parami rozłącznych podzbiorów okręgu Przypuśćmy, że jest zbiorem nieskończonym. Ustalmy bijekcję i zauważmy że
gdzie jest obrotem o kąt
  • Mazurkiewicz i Sierpiński podali w 1914 następujący przykład paradoksalnego (ze względu na izometrie) podzbioru płaszczyzny. Jak wcześniej, utożsamiamy płaszczyznę ze zbiorem liczb zespolonych. Niech
Można łatwo sprawdzić, że (przypomnijmy, że jest liczbą przestępną) oraz
gdzie jest obrotem, a
gdzie jest przesunięciem.

Rozkłady paradoksalne[edytuj | edytuj kod]

Definicje[edytuj | edytuj kod]

Przypuśćmy, że grupa działa na zbiorze

  • Powiemy, że zbiór jest paradoksalny ze względu na działanie grupy G, jeśli można znaleźć parami rozłączne zbiory (gdzie ) oraz elementy grupy takie że
oraz

Intuicyjnie, jest paradoksalny ze względu na działanie grupy jeśli można podzielić zbiór na skończenie wiele kawałków, z których można złożyć dwie kopie zbioru używając bijekcji wyznaczonych przez elementy grupy

  • Zbiór jest σ-paradoksalny ze względu na działanie grupy G, jeśli można znaleźć parami rozłączne zbiory oraz elementy grupy takie że
oraz
  • Niech Powiemy, że zbiory i kawałkami -równoważne, jeśli można wybrać oraz tak że
(a) dla
(b)
(c) dla każdego

Przykłady[edytuj | edytuj kod]

  • Zakładając aksjomat wyboru, okrąg jednostkowy jest σ-paradoksalny ze względu na grupę obrotów okręgu. (Zobacz dyskusję zbioru Vitalego wcześniej.)
  • Zbiór podany przez Mazurkiewicza i Sierpińskiego (dyskutowany wcześniej) jest paradoksalny ze względu na grupę izometrii płaszczyzny.
Zbiory i zaznaczone na grafie Cayleya grupy wolnej
Animacja dowodu twierdzenia Banacha-Tarskiego za pomocą grafu Cayleya opartego na fraktalu
  • Rozważmy grupę wolną o dwóch generatorach i działającą na sobie przez mnożenie z lewej strony. (Tak więc elementowi odpowiada bijekcja ) Dla niech będzie zbiorem wszystkich elementów grupy (słów w formie nieskracalnej) które zaczynają się od Zauważmy, że
i zbiory występujące w tej sumie są rozłączne, oraz
i
Zatem jest zbiorem paradoksalnym ze względu na działanie grupy

Twierdzenia[edytuj | edytuj kod]

W poniższych stwierdzeniach zakładamy aksjomat wyboru (tzn. są to twierdzenia ZFC).

  • Przypuśćmy, że
(a) grupa działa na zbiorze w taki sposób że żadne z odwzorowań nie ma punktów stałych (dla ),
(b) jest zbiorem paradoksalnym ze względu na działanie grupy (przez mnożenie z lewej strony).
Wówczas zbiór jest paradoksalny ze względu na działanie grupy
  • Z powyższego twierdzenia wynika, że jeśli grupa wolna działa na zbiorze w taki sposób, że żadne z odwzorowań nie ma punktów stałych (dla ), to zbiór jest paradoksalny ze względu na działanie grupy
  • Istnieje przeliczalny podzbiór sfery jednostkowej taki, że zbiór jest paradoksalny ze względu na działanie grupy obrotów
  • Jeśli jest przeliczalny, to zbiory i kawałkami -równoważne.

Bezpośrednio z dwóch powyższych twierdzeń możemy wywnioskować twierdzenie Banacha-Tarskiego:

  • Sfera jednostkowa jest paradoksalna ze względu na działanie grupy obrotów

Kolejne wyniki są wnioskami z powyższego twierdzenia. Niech będzie grupą izometrii przestrzeni

  • Każda kula w jest paradoksalna ze względu na działanie grupy Również sama przestrzeń jest paradoksalna ze względu na działanie tej grupy.
  • Jeśli zbiorami ograniczonymi o niepustych wnętrzach, to zbiory są kawałkami -równoważne.

Zobacz też[edytuj | edytuj kod]

Przypisy[edytuj | edytuj kod]

  1. a b Wagon, Stan: The Banach-Tarski paradox, w: „Encyclopedia of Mathematics and its Applications”, 24. Cambridge University Press, Cambridge, 1985. ​ISBN 0-521-30244-7​.
  2. Vitali, Giuseppe: Sul problema della misura dei gruppi di punti di una retta. Bologna: Gamberini e Parmeggiani, 1905.
  3. Mazurkiewicz, Stefan; Sierpiński, Wacław: Sur un ensemble superposable avec chacune de ses deux parties. „C. R. Acad. Sci. Paris”. 158 (1914), s. 618–619.
  4. Hausdorff, Felix: Bemerkung über den Inhalt von Punktmengen. „Math. Ann.” 75 (1915), s. 428–433.
  5. Banach, Stefan; Tarski, Alfred: Sur la décomposition des ensembles de points en parties respectivement congruentes, „Fundamenta Mathematicae” 6 (1924), s. 244–277. Dostępna w formacie pdf tutaj.
  6. Pawlikowski, Janusz: The Hahn-Banach theorem implies the Banach-Tarski paradox. „Fundamenta Mathematicae” 138 (1991), s. 21–22.
  7. Dougherty, Randall; Foreman, Matthew. Banach-Tarski decompositions using sets with the property of Baire. „J. Amer. Math. Soc.” 7 (1994), s. 75–124.
  8. Galileo Galilei. Discorsi e dimostrazioni matematiche, intorno à due nuove scienze, 1638.

Linki zewnętrzne[edytuj | edytuj kod]