Pierścień (matematyka): Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja nieprzejrzana]
Usunięta treść Dodana treść
Konradek (dyskusja | edycje)
jghjjkf
Linia 1: Linia 1:
{{definicja|Zbiór, którego elementy mogą być [[dodawanie|dodawane]], [[odejmowanie|odejmowane]] i [[mnożenie|mnożone]].}}
{{definicja|Zbiór, którego elementy mogą być [[dodawanie|dodawane]], [[odejmowanie|odejmowane]] i [[mnożenie|mnożone]ytjvbnfdgfnytjsgytfght, ''[[pierścień przemienny]]''.
'''Pierścień''' – [[algebra ogólna|struktura]] formalizująca własności algebraiczne [[liczby całkowite|liczb całkowitych]] oraz [[arytmetyka modularna|arytmetyki modularnej]]. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. [[liczba pierwsza|liczby pierwsze]] (przez ''[[ideał pierwszy|ideały pierwsze]]''), [[wielomian]]y, [[ułamek|ułamki]] oraz rozwinięcie teorii [[dzielnik|podzielności]] i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie [[algorytm Euklidesa|algorytmu Euklidesa]] (tzw. ''[[dziedzina Euklidesa|pierścień Euklidesa]]''). Dział matematyki opisujący te struktury nazywa się [[teoria pierścieni|teorią pierścieni]].

W literaturze spotyka się rozmaite definicje pierścieni różniące się stopniem uogólnienia. W artykule tym za najogólniejszą przyjmowana jest definicja tzw. ''pierścienia łącznego''. Wnioskom płynącym z zawężenia definicji poprzez wymaganie elementu neutralnego mnożenia bądź warunku przemienności mnożenia również poświęcono osobne artykuły: ''[[pierścień z jedynką]]'', ''[[pierścień przemienny]]''.


== Definicja ==
== Definicja ==

Wersja z 11:43, 10 lut 2011

{{definicja|Zbiór, którego elementy mogą być dodawane, odejmowane i [[mnożenie|mnożone]ytjvbnfdgfnytjsgytfght, pierścień przemienny.

Definicja

Niech będzie algebrą, w której jest pewnym niepustym zbiorem, symbole oznaczają dwa działania dwuargumentowe określone w tym zbiorze, a jest pewnym wyróżnionym elementem. Algebra ta nazwana jest pierścieniem (łącznym), jeśli:

  • struktura jest grupą abelową, nazywaną grupą addytywną, z działaniem nazywanym dodawaniem i elementem neutralnym nazywanym zerem:
    ,
    ,
    ,
    ;
  • struktura jest półgrupą z działaniem nazywanym mnożeniem:
    ;
  • oba działania powiązane są ze sobą prawami rozdzielności:
    ,
    .

Element odwrotny do względem dodawania (element z trzeciego aksjomatu) nazywa się elementem przeciwnym i oznacza .

Warianty

Na działanie mnożenia nakłada się często dodatkowe warunki regularności precyzując nazwę nowej struktury:

  • pierścień z jedynką – istnienie elementu neutralnego mnożenia nazywanego jedynką[1]:
    ,
  • pierścień przemienny – przemienność mnożenia (wówczas prawa rozdzielności stają się sobie równoważne):
    .
Uwaga
W pierścieniu z jedynką struktura jest monoidem (przemiennym, jeśli pierścień jest przemienny), wynika stąd, że pierścień może mieć co najwyżej jedną jedynkę.

W praktyce najczęściej rozpatruje się (niezerowe) pierścienie z jedynką; ich atutem jest, gdy są one dodatkowo przemienne.

Rodzaje

Podstawowa definicja pierścienia, bywa rozwijana w wielu różnych kierunkach:

  • pierścień bez dzielników zera – brak właściwych dzielników zera (zob. dalej):
  • pierścień z dzieleniem – dowolny niezerowy element ma element odwrotny (zakłada się, że pierścień ma jedynkę):
    ,

Element odwrotny do (względem mnożenia; w powyższym aksjomacie) oznacza się zwykle symbolami lub .

Uwaga
W ogólności w pierścieniu mogą istnieć elementy odwracalne, tworzą one grupę nazywaną grupą elementów odwracalnych, którą oznacza się symbolem . W pierścieniu z dzieleniem struktura jest grupą (przemienną, jeśli pierścień jest przemienny), którą nazywa się grupą multiplikatywną i oznacza ; oznaczenie nie jest przypadkowe: pokrywa się ona wówczas z grupą elementów odwracalnych.

Pierścień z jedynką bez dzielników zera nazywa się dziedziną. Ponieważ własność dzielenia pociąga za sobą brak dzielników zera[2], to każdy pierścień z dzieleniem jest pierścieniem bez dzielników zera, a więc dziedziną. Dziedziny przemienne określa się nazwą dziedzina całkowitości (także: pierścień całkowity; niekiedy nie wyróżnia się nieprzemiennych dziedzin całkowitości, wówczas często skraca się nazwę tej struktury do: dziedzina). Pierścień przemienny z dzieleniem (lub z powyższej obserwacji: dziedzinę całkowitości z dzieleniem) nazywa się ciałem.

Przykłady

Do najprostszych uniwersalnych przykładów należą:

Innymi ważnymi przykładami pierścieni są:

Osobnym przykładem są pierścienie wielomianów jednej zmiennej o współczynnikach z pierścienia W zachowywane są następujące własności pierścienia : przemienność, istnienie jedynki, brak dzielników zera, całkowitość (tzn. bycie dziedziną całkowitości), jednoznaczność rozkładu (twierdzenie Gaussa), noetherowskość (twierdzenie Hilberta o bazie). Jeżeli jest ciałem, to jest pierścieniem euklidesowym.

Dobrze znane struktury liczb wymiernych, liczb rzeczywistych, czy liczb zespolonych z działaniami arytmetycznymi są przykładami pierścieni, jako że wszystkie są ciałami. Z kolei liczby naturalne (z działaniami arytmetycznymi) nie tworzą pierścienia, ponieważ wraz z działaniem dodawania nie tworzą nawet grupy; oktoniony również nie są pierścieniem, ponieważ mnożenie w nich określone nie jest łączne, lecz tylko alternatywne.

Składowe

Podpierścienie

 Osobny artykuł: podpierścień.

Podzbiór pierścienia nazywa się podpierścieniem, jeżeli jest on zamknięty na działania pierścienia , czyli sam tworzy pierścień z działaniami odziedziczonymi z :

  • ,
  • .

Pierwszy warunek oznacza, że musi być grupą (przemienną), drugi gwarantuje, że wynik mnożenia elementów z będzie zawierał się w tym samym zbiorze (tzn. mnożenie jest tam poprawnie określonym działaniem wewnętrznym).

Ideały

 Osobny artykuł: ideał (teoria pierścieni).

Podgrupę grupy addytywnej pierścienia nazywa się ideałem lewostronnym, jeżeli dla dowolnych dwóch elementów oraz spełniony jest warunek

.

Jeżeli spełnia w zamian warunek

,

to nazywa się ją ideałem prawostronnym. Ideał będący zarazem lewo- jak i prawostronny nazywa się krótko ideałem; pojęcia te pokrywają się w pierścieniach przemiennych. Każdy ideał jest podpierścieniem.

W dowolnym nietrywialnym pierścieniu istnieją co najmniej dwa różne ideały: cały pierścień i podpierścień trywialny , nazywa się je ideałami trywialnymi lub niewłaściwymi, wszystkie pozostałe nazywa się ideałami właściwymi.

Ze względu na inne własności wyróżnia się m.in. następujące rodzaje ideałów pierścienia :

  • ideał główny – generowany przez jeden element pierścienia,
  • ideał maksymalny – zawarty wyłącznie w ideale niewłaściwym ,
  • ideał pierwszy – taki, że jeśli dany element ideału jest iloczynem dwóch innych, to przynajmniej jeden z nich również należy do ideału.

Elementy wyróżnione

Element pierścienia nazywa się

  • dzielnikiem zera, gdy istnieje taki niezerowy element , że .
  • idempotentnym, gdy .
  • nilpotentnym, gdy istnieje , dla którego .

W pierścieniu skończonym (mającym skończenie wiele elementów) każdy element jest odwracalny albo jest dzielnikiem zera.

Homomorfizmy

Przekształcenie między dwoma pierścieniami zachowujące ich działania, tzn. dla dowolnych elementów spełnione są warunki:

  • ,
  • ,

nazywa się homomorfizmem pierścieni. Inaczej: jest to homomorfizm grup addytywnych, a przy tym homomorfizm półgrup multiplikatywnych tych pierścieni.

Przekształcenie między dwoma pierścieniami z jedynką zachowujące ich działania i jedynkę, tzn. dla dowolnych elementów spełnione są warunki:

  • ,
  • ,
  • ,

nazywa się homomorfizmem pierścieni z jedynką. Inaczej: jest to homomorfizm grup addytywnych, a przy tym homomorfizm monoidów multiplikatywnych.

Pierścień ilorazowy

 Osobny artykuł: pierścień ilorazowy.

W dowolnym pierścieniu grupa ilorazowa , gdzie jest dowolnym ideałem (dwustronnym), jest pierścieniem z dobrze określonymi działaniami dodawania i mnożenia na warstwach:

  • ,
  • .

Pierścień ten nazywa się pierścieniem ilorazowym pierścienia przez ideał i również oznacza symbolem .

Dodawanie jest dobrze określone z definicji grupy ilorazowej. Wystarczy więc dowieść, że iloczyn warstw nie zależy od wyboru reprezentanta mnożonych warstw. Niech dane będą dwie warstwy, każda z nich reprezentowana przez dwa różne elementy: oraz . Równość

dowodzi, że zmiana reprezentantów nie wpływa na wynik mnożenia, gdyż otrzymuje się tę samą, choć reprezentowaną przez inny element, warstwę.

Uogólnienia i przypadki szczególne

Wyróżnia się wiele rodzajów pierścieni, na które nakłada się dodatkowe warunki:

  1. Niekiedy wymaga się, aby był on różny od elementu neutralnego dodawania wykluczając przy tym przypadek pierścienia zerowego, przybliżając definicję pierścienia do określenia ciała.
  2. Z aksjomatu istnienia elementu odwrotnego wynika, że dla każdego istnieje element odwrotny . Gdyby pierścień miał dzielniki zera, to istniałyby takie , że . Lewostronne mnożenie stronami przez daje ; z istnienia elementu neutralnego mnożenia otrzymuje się sprzeczność z założeniem .

Literatura

  • Andrzej Białynicki-Birula, Algebra
  • Jerzy Browkin, Teoria ciał

Zobacz też