Równanie różniczkowe Poissona

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Równanie różniczkowe Poissona – niejednorodne równanie różniczkowe cząstkowe liniowe drugiego rzędu typu eliptycznego.

Równanie to zapisać można w postaci:

lub inaczej

.

Funkcję zmiennych przestrzennych traktuje się jako znaną.

Równanie można również zapisać explicite dla przestrzeni o zadanym wymiarze.

Dla przestrzeni trójwymiarowej przyjmuje ono postać:

a dla dwuwymiarowej:

W przypadku jednowymiarowym równanie Poissona redukuje się do równania różniczkowego zwyczajnego:

W przypadku jednorodnym, tj. jeśli to mamy do czynienia z przypadkiem szczególnym znanym pod nazwą równania różniczkowego Laplace’a.

Równanie Poissona opisuje wiele procesów zachodzących w przyrodzie, np. rozkład pola prędkości cieczy wypływającej ze źródła, potencjał pola grawitacyjnego w obecności źródeł, potencjał pola elekrostatycznego w obecności ładunków, temperaturę wewnątrz ciała przy stałym dopływie ciepła.

Nazwa równania pochodzi od nazwiska Simeona Denisa Poissona, który sformułował je na początku XIX wieku i przeprowadził analizę jego rozwiązań.

Rozwiązania i funkcje Greena[edytuj]

Równanie różniczkowe Poissona z dołączonymi do niego warunkami brzegowymi tworzy eliptyczne zagadnienie brzegowe. Zagadnienie to posiada rozwiązania regularne, o ile warunki brzegowe mają postać ciągłą.

Dla obszaru i funkcji ciągłych i rozwiązaniem równania Poissona w obszarze spełniającym warunek na brzegu jest

gdzie jest funkcją Greena obszaru (o ile dla danego obszaru taka funkcja istnieje).

Funkcją Greena półprzestrzeni jest

gdzie a jest rozwiązaniem podstawowym laplasjanu.

Funkcją Greena (hiper-)kuli jest

gdzie a jest rozwiązaniem podstawowym laplasjanu.

Zobacz też[edytuj]

Bibliografia[edytuj]