Mechanika kwantowa

Z Wikipedii, wolnej encyklopedii
To jest stara wersja tej strony, edytowana przez Tarnoob (dyskusja | edycje) o 16:58, 28 sty 2018. Może się ona znacząco różnić od aktualnej wersji.
Max Planck – wprowadzenie do fizyki pojęcia kwantu energii, sformułowanie wzoru
Albert Einstein – zaproponował kwanty światła, nazwane potem fotonami, wyjaśniając zjawisko fotoelektryczne.
Niels Bohr – pierwszy kwantowy model atomu. Stworzenie interpretacji kopenhaskiej i zasady korespondencji.
Louis de Broglie – koncepcja fal materii. Pierwsza teoria zmiennych ukrytych.
Erwin Schrödinger – sformułowanie równania, stanowiącego podstawę mechaniki kwantowej i chemii kwantowej. Autor znanego eskperymentu myślowego z kotem.
Werner Heisenberg
sformułował mechanikę macierzową i zasadę nieoznaczoności. Współtwórca interpretacji kopenhaskiej.

Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów poszerzająca zakres mechaniki na sytuacje, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim świat mikroskopowy – obiekty o bardzo małych masach i rozmiarach, np. atom, cząstki elementarne itp., ale także takie zjawiska makroskopowe jak nadprzewodnictwo i nadciekłość. Jej granicą dla średnich rozmiarów, energii czy pędów zwykle jest mechanika klasyczna.

Dla zjawisk zachodzących w mikroświecie konieczne jest stosowanie mechaniki kwantowej, gdyż mechanika klasyczna nie daje poprawnego opisu tych zjawisk. Jest to jednak teoria znacznie bardziej złożona matematycznie i pojęciowo.

Zasady mechaniki kwantowej są obecnie paradygmatem fizyki i chemii. Nierelatywistyczna mechanika kwantowa pozostaje słuszna, dopóki stosuje się ją w odniesieniu do ciał poruszających się z prędkościami dużo mniejszymi od prędkości światła w próżni. Jej uogólnieniem próbowała być relatywistyczna mechanika kwantowa, ale ostatecznie okazało się, że takie uogólnienie musi mieć postać kwantowej teorii pola.

Mechanika kwantowa została stworzona niezależnie przez Wernera Heisenberga i Erwina Schrödingera w 1925 r. Została szybko rozwinięta dzięki pracom Maxa Borna i Paula Diraca. Jeszcze przed powstaniem ostatecznej wersji mechaniki kwantowej prekursorskie prace teoretyczne stworzyli Albert Einstein i Niels Bohr. Jej wersję obejmującą teorię pól kwantowych doprowadzili do ostatecznej formy Richard Feynman i inni.

Historia

Pod koniec XIX w. fizykę uważano za najbardziej kompletną ze wszystkich nauk ścisłych (patrz historia fizyki). Istniało jedynie kilka słabo zbadanych problemów, których rozwiązanie spodziewano się wkrótce otrzymać, jakkolwiek nie przypuszczano, by te rezultaty miały znaczący wpływ na fizyczny obraz świata. Bardzo niewielu ludzi zdawało sobie sprawę z wagi nierozwiązanych problemów, do których w szczególności należał problem objaśnienia zjawiska promieniowania termicznego ciała doskonale czarnego[a]. Bliższe badania promieniowania ciała doskonale czarnego, zjawiska fotoelektrycznego, a także zjawiska Comptona sprawiły, że całkowicie zmieniło się postrzeganie świata przez fizyków.

Mechanika klasyczna a mechanika kwantowa

Ogólną wskazówką, którą się kiedyś posługiwano, aby rozsądzić, czy należy użyć mechaniki kwantowej, by uniknąć znaczących błędów w opisie zjawisk, jest porównanie długości fali de Broglie’a z wielkością analizowanego układu fizycznego. Jeśli są to wielkości zbliżone do siebie, zastosowanie mechaniki klasycznej da najpewniej nieprawidłowe wyniki. Obecnie, z racji postępu doświadczalnego, znane jest wiele zjawisk kwantowych, dla których ta prosta reguła nie obowiązuje.

Zasady mechaniki kwantowej określają sposób patrzenia na wszelkie zjawiska fizyczne i chemiczne, także te, których opis prowadzi się przy użyciu mechaniki klasycznej: stara się wówczas wykazać, że jest to klasyczna granica opisu kwantowego (zasada korespondencji). Stanowi ona podstawę badawczą takich działów nauki jak: fizyka materii skondensowanej, chemia kwantowa, fizyka jądrowa, fizyka cząstek elementarnych czy astrofizyka.

Sformułowanie matematyczne

Matematycznie ścisłe sformułowanie mechaniki kwantowej pochodzi od Paula Diraca i Johna von Neumanna. W tym sformułowaniu stan układu kwantowego (stan czysty) reprezentowany jest przez wektor jednostkowy (nazywany wektorem stanu) w zespolonej przestrzeni Hilberta (nazywanej często przestrzenią stanów układu fizycznego).

Każda wielkość fizyczna (obserwabla) reprezentowana jest przez hermitowski (lub samosprzężony) operator liniowy działający w przestrzeni stanów (przestrzeni Hilberta). Zbiór wartości własnych tego operatora, nazywany widmem punktowym operatora, interpretuje się jako zbiór możliwych wartości obserwowalnych (pomiarowych). Dla hermitowskich operatorów wartości w widmie są liczbami rzeczywistymi, co stanowi motywacje ich wprowadzenia w takiej a nie innej roli. Stany własne tego operatora do tych wartości własnych interpretuje się jako możliwe stany, w których znajdzie się układ po dokonaniu pomiaru.

Alternatywnym sformułowaniem jest feynmanowskie funkcjonalne całkowanie po trajektoriach. Jest to odpowiednik zasady najmniejszego działania w mechanice klasycznej.

Zjawiska opisywane przez mechanikę kwantową

Gęstości prawdopodobieństwa zlokalizowania elektronu w atomie wodoru w zależności od dyskretnych liczb kwantowych n=1,2,3, oraz l=0,1,2. Wynik uzyskany z rozwiązania równania Schrödingera.
 Główny artykuł: zjawisko kwantowe.

Obok zjawisk będących inspiracją do budowy mechaniki kwantowej jej wielki sukces wiąże się z prawidłowym opisem następujących zjawisk:

Konsekwencje filozoficzne

Rozwój mechaniki kwantowej wywarł ogromny wpływ na współczesną filozofię. Istotny wpływ wywarła interpretacja kopenhaska związana z Nielsem Bohrem. Zgodnie z tą interpretacją, probabilistyczna natura mechaniki kwantowej nie może być wyjaśniona w ramach innej deterministycznej teorii, ale jest odbiciem probabilistycznej natury samego Wszechświata.

Albert Einstein, będący jednym z twórców mechaniki kwantowej, był przeciwny interpretacji kopenhaskiej – uważał, że powinna istnieć ukryta deterministyczna teoria u podstaw mechaniki kwantowej, którą w obecnej postaci uważał za teorię niedokończoną. Popierał teorie zmiennych ukrytych. W celu wykazania sprzeczności między mechaniką kwantową a szczególną teorią względności zaproponował paradoks EPR.

Teoria de Broglie-Bohma, sformułowana przez Davida Bohma w 1952 roku, jest deterministyczną interpretacją mechaniki kwantowej – ale jest sformułowana na sposób niezgodny ze szczególną teorią względności Einsteina.

W latach 60. John Stewart Bell opublikował dalsze prace na temat lokalności i realizmu w mechanice kwantowej, odwołując się do paradoksu EPR.

Mechanika kwantowa doczekała się alternatywnych intepretacji, jak np. hipoteza Wieloświata zaproponowana przez Everetta.

Zobacz też

Uwagi

  1. Przeciwnikiem takiego rozpowszechnionego poglądu był Richard Feynman, zdaniem którego fizycy tacy jak Maxwell czy Jeans dostrzegali poważne braki klasycznej mechaniki statystycznej w opisywaniu własności termodynamicznych gazu dwuatomowego. Zdaniem Feynmana „sumienna lektura ówczesnej (tzn. z końca XIX wieku) literatury wskazuje, że wszyscy fizycy przeżywali jakiś niepokój”. Feynman, Leighton i Sands 1974 ↓, s. 230

Bibliografia

Linki zewnętrzne

Artykuły na Stanford Encyclopedia of Philosophy (ang.) [dostęp 2018-01-28]: