Trójkąt
Liczba boków |
3 |
---|---|
Liczba przekątnych |
0 |
Symbol Schläfliego |
{3} (trójkąt równoboczny) |
Kąt wewnętrzny |
60° (trójkąt równoboczny) |
Trójkąt – wielokąt o trzech bokach[1]. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów).
Odcinki tworzące łamaną nazywamy bokami, punkty wspólne sąsiednich boków nazywamy wierzchołkami trójkąta[1][2]. Każdy trójkąt jest jednoznacznie wyznaczony przez swoje wierzchołki.
Często dla wygody jeden z boków trójkąta nazywa się podstawą, a pozostałe – ramionami[1].
W każdym trójkącie suma miar kątów wewnętrznych między bokami wynosi 180°[1], zaś długości boków muszą spełniać pewne zależności (patrz dalej).
Rodzaje
[edytuj | edytuj kod]Trójkąty można dzielić ze względu na długości ich boków oraz ze względu na miary ich kątów.
Przy podziale ze względu na boki wyróżnia się:
- trójkąt różnoboczny ma każdy bok innej długości;
- trójkąt równoramienny ma dwa boki (ramiona) tej samej długości[1];
- trójkąt równoboczny ma wszystkie trzy boki tej samej długości[1]; wszystkie jego kąty są tej samej miary.
równoboczny | równoramienny | różnoboczny |
Przy podziale ze względu na kąty wyróżnia się:
- trójkąt ostrokątny, którego wszystkie kąty wewnętrzne są ostre[1];
- trójkąt prostokątny to taki, w którym jeden z kątów wewnętrznych jest prosty[1] (a więc pozostałe sumują się do kąta prostego); boki tworzące kąt prosty nazywa się przyprostokątnymi, pozostały bok nosi nazwę przeciwprostokątnej[3]; przeciwprostokątna zawsze jest dłuższa od każdej przyprostokątnej;
- trójkąt rozwartokątny, którego jeden kąt wewnętrzny jest rozwarty[1].
ostrokątny | prostokątny | rozwartokątny |
Trójkąty można dzielić również ze względu na inne relacje równoważności, np. podobieństwo, przystawanie.
Ważne pojęcia
[edytuj | edytuj kod]Wysokość trójkąta to odcinek, który łączy wierzchołek trójkąta z prostą zawierającą przeciwległy bok i który jest prostopadły do tej prostej[4][5]. Często wysokością nazywa się również długość tego odcinka. Punkt wspólny wysokości i boku trójkąta (lub jego przedłużenia) nazywa się spodkiem tej wysokości. Każdy trójkąt ma trzy wysokości[5]. Wysokości trójkąta (lub ich przedłużenia) przecinają się w jednym punkcie, który nazywamy ortocentrum[4][5].
Środkowa trójkąta to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku[4][5]. Każdy trójkąt ma trzy środkowe[5], które przecinają się w jednym punkcie, nazywanym środkiem ciężkości (barycentrum, środkiem masy) trójkąta. Punkt ten dzieli każdą ze środkowych na dwie części, przy czym odcinek łączący barycentrum z wierzchołkiem jest dwa razy dłuższy od odcinka łączącego barycentrum ze środkiem boku[4][5].
Symetralna boku trójkąta to prosta prostopadła do tego boku i przechodząca przez jego środek[1]. Każdy trójkąt ma trzy symetralne boków, przecinające się w punkcie będącym środkiem okręgu opisanego na tym trójkącie[1].
Dwusieczne kątów wewnętrznych trójkąta przecinają się w punkcie, który jest środkiem okręgu wpisanego w ten trójkąt[1].
Symediana jest odbiciem środkowej w dwusiecznej wychodzącej z tego samego wierzchołka trójkąta.
Punkt Nagela – punkt, w którym przecinają się proste łączące wierzchołki z punktami styczności przeciwległych boków z odpowiednimi okręgami dopisanymi.
Punkt Gergonne'a – punkt przecięcia prostych łączących wierzchołki z punktami styczności przeciwległych boków do okręgu wpisanego w trójkąt.
Punkty Brocarda – w trójkącie ABC o bokach a, b, c znajduje się dokładnie jeden taki punkt P, że proste AP, BP, CP z bokami odpowiednio c, a, b tworzą równe kąty.
Punkt Fermata – punkt, którego suma odległości od wierzchołków trójkąta jest najmniejsza z możliwych.
wysokości i ortocentrum | środkowe i barycentrum | symetralne i okrąg opisany | dwusieczne i okrąg wpisany |
W każdym trójkącie punkty przecięcia: środkowych boków symetralnych boków wysokości (odpowiednio: barycentrum, środek okręgu opisanego, ortocentrum) leżą na jednej prostej, zwanej prostą Eulera. Ponadto
Pole powierzchni
[edytuj | edytuj kod]Przyjmując dla trójkąta następujące oznaczenia:
- – długości boków;
- – wysokości opuszczone na boki odpowiednio
- – kąty leżące naprzeciw boków odpowiednio
- – pole powierzchni;
- – promień okręgu opisanego;
- – promień okręgu wpisanego;
- – połowa obwodu;
dostaniemy następujące wzory na pole powierzchni[3]:
- (wzór Herona);
- (postać wyznacznikowa).
Z powyższych wzorów można wyprowadzić również następujące:
W geometrii analitycznej przyjmując dla wierzchołków trójkąta[3]
dostaniemy także następujące wzory:
- czyli
Środek geometryczny
[edytuj | edytuj kod]Trójkąt, którego wierzchołki mają współrzędne kartezjańskie:
ma środek geometryczny (barycentrum) w punkcie:
Nierówność trójkąta
[edytuj | edytuj kod]W każdym trójkącie o bokach, których długości wynoszą i zachodzi następująca nierówność, zwana nierównością trójkąta:
i analogicznie
Trójkąt o bokach, których długości wynoszą i istnieje wtedy i tylko wtedy, gdy spełnione są te trzy nierówności. Można je zapisać w równoważnej postaci:
Geometrie nieeuklidesowe
[edytuj | edytuj kod]Na płaszczyźnie euklidesowej suma miar kątów wewnętrznych trójkąta jest równa kątowi półpełnemu, czyli
W geometriach innych niż euklidesowa suma kątów wewnętrznych nie musi wynosić 180°. Na przykład osoba, która pójdzie z bieguna północnego 10 tys. km na południe, 10 tys. km na zachód, a potem 10 tys. km na północ znajdzie się z powrotem na biegunie, choć dwukrotnie skręciła o 90°, więc trójkąt przez nią zakreślony ma sumę kątów większą niż 180°, a dokładnie 270°. Dzieje się tak, gdyż na sferze (dobre przybliżenie powierzchni geoidy) obowiązuje geometria eliptyczna, a nie euklidesowa. Dowód własności, że w przestrzeni euklidesowej suma kątów w trójkącie wynosi 180°, opiera się na piątym aksjomacie Euklidesa, który wyróżnia geometrię euklidesową spośród innych geometrii.
Zobacz też
[edytuj | edytuj kod]- okrąg dziewięciu punktów
- sympleks
- trójkąt Penrose’a
- trójkąt sferyczny
- trójkąt wymierny
- twierdzenia: sinusów, cosinusów, tangensów
- twierdzenie Cevy, trygonometryczne
- twierdzenie Menelaosa
- twierdzenie Pitagorasa
- wzór Herona
Przypisy
[edytuj | edytuj kod]- ↑ a b c d e f g h i j k l Encyklopedia szkolna ↓, s. 287.
- ↑ trójkąt, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-09-29] .
- ↑ a b c Encyklopedia szkolna ↓, s. 288.
- ↑ a b c d I.N. Bronsztejn i inni, Nowoczesne kompendium matematyki, Warszawa: Wydawnictwo Naukowe PWN, 2022, s. 142-143, ISBN 978-83-01-14148-6 (pol.).
- ↑ a b c d e f Marcin Kurczab , Elżbieta Kurczab , Elżbieta Świda , Matematyka 1: podręcznik do liceów i techników: zakres rozszerzony, Wydanie I, Warszawa: Oficyna Edukacyjna Krzysztof Pazdro, 2019, s. 332-338, ISBN 978-83-7594-172-2 [dostęp 2024-02-04] (pol.).
Bibliografia
[edytuj | edytuj kod]- Matematyka, Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1990 (Encyklopedia szkolna), ISBN 83-02-02551-8 .
Linki zewnętrzne
[edytuj | edytuj kod]- Joanna Jaszuńska , Dziesięć wzorów na pole trójkąta, „Delta”, kwiecień 2009, ISSN 0137-3005 [dostęp 2024-11-01] .
- Joanna Jaszuńska , P = 1/2 ah, „Delta”, październik 2011, ISSN 0137-3005 [dostęp 2024-11-01] .
- Piotr Pikul , Jak wyznaczyć najbardziej dowolny trójkąt?, „Delta”, czerwiec 2021, ISSN 0137-3005 [dostęp 2024-11-02] .
- Eric W. Weisstein , Triangle, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2023-06-01].