Artykuł należy uzupełnić o istotne informacje: historia, bardziej bezpośrednie odwołanie do funkcji kwadratowej (metoda graficzna), ogólniej o rezolwentach Lagrange’a (teraz połączone ze wzorami Viète’a), metody numeryczne (uwarunkowania), wprost o postaci monicznej (a = 1), pełniej o różnych ciałach (w tym charakterystyki 2 i rozszerzeniach; opisanie symbolu pierwiastka w ich kontekście). Po wyeliminowaniu niedoskonałości należy usunąć szablon {{Dopracować}} z tego artykułu.
Ten artykuł dotyczy równań kwadratowych i ich rozwiązań. Zobacz też: funkcja kwadratowa, gdzie opisano wielomiany kwadratowe w szerszym kontekście.
Wykres funkcji kwadratowej zmiennej rzeczywistej przy zmianie różnych współczynników
gdzie są jego współczynnikami rzeczywistymi, zespolonymi bądź są elementami dowolnego ciała. Zakłada się, że dzięki czemu równanie nie degeneruje się do równania liniowego. Współczynniki niekiedy nazywane są kolejno: kwadratowym, liniowym i stałym (bądź wyrazem wolnym[2]).
Inną nazwą równania kwadratowego jest równanie drugiego stopnia.
nazywa się każdą liczbę, która podstawiona w miejsce daje po wykonaniu wszystkich działań równość. Jeżeli przedstawić powyższe równanie w postaci iloczynowej, tzn.
dla pewnych liczb to jego rozwiązaniem jest dowolna z liczb gdyż podstawiona zamiast sprawia, że lewa strona równości jest równa zeru.
W szczególności może być wówczas postacią iloczynową równania wyjściowego jest
(piąta równość zachodzi na podstawie wzoru skróconego mnożenia na różnicę kwadratów), to pierwiastkami tego wielomianu są wielkości
oraz
Wyrażenie
nazywa się wyróżnikiem równania kwadratowego. W szczególności jeżeli to
Powyższe równości są prawdziwe w dziedzinie zespolonej – w szczególności, gdy to
gdzie jest jednostką urojoną, a wyrażenie pod pierwiastkiem po prawej stronie jest dodatnią wielkością rzeczywistą. Wtedy też równanie ma dwa sprzężone ze sobą rozwiązania zespolone, których część rzeczywista wynosi Jeżeli to rozwiązaniami są liczby rzeczywiste symetryczne względem Przypadki dla można podsumować zdaniem: średnia arytmetyczna pierwiastków wynosi (por. wzory Viète’a).
Zwykle wykorzystanie wzorów skróconego mnożenia nie jest możliwe, jednak czasami drobne przekształcenia równania pozwalają uprościć proces wyznaczania rozwiązania; szczególnie, jeśli wyłącznie wyraz wolny stanowi przeszkodę. Niech
będzie równaniem, którego rozwiązania są poszukiwane. Jeżeli
to wyjściowe równanie można przekształcić następująco:
skąd
a skorzystawszy ze wzoru skróconego mnożenia na różnicę kwadratów otrzymuje się
co daje rozwiązania
oraz
Podobnie jak objaśniono to wyżej, rozwiązanie rzeczywiste istnieje wyłącznie, gdy
Istnieje prosta metoda wyznaczania pierwiastków wymiernych równania kwadratowego o współczynnikach całkowitych, czyli postaci
gdzie są liczbami całkowitymi (jeżeli są liczbami wymiernymi, spośród których choć jedna nie jest całkowita, to równanie można pomnożyć stronami przez najmniejszą wspólną wielokrotność mianowników tych współczynników uzyskując równanie równoważne, tj. o jednakowym zbiorze rozwiązań). Dokładniej:
Powyższe twierdzenie jest prawdziwe także dla wielomianów wyższych stopni.
Przykłady
Rozwiązaniami wymiernymi równania
mogą być tylko liczby należące do zbioru Podstawiając otrzymuje się wyraźnie dużą liczbę dodatnią po lewej stronie; podstawienie daje liczba podstawiona do równania daje po lewej stronie wartość liczba jest rozwiązaniem powyższego równania (drugim jest ).
jest równa zeru, tzn. to wśród jego rozwiązań znajduje się liczba (por. przykład z powyższej sekcji). Jeżeli to liczba jest pierwiastkiem tego równania.