Tul

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Tul
erb ← tul → iterb
Wygląd
srebrzysty
Tul
Ogólne informacje
Nazwa, symbol, l.a. tul, Tm, 69
(łac. thullium)
Grupa, okres, blok –, 6, f
Stopień utlenienia III, II, IV[3]
Właściwości metaliczne lantanowiec
Właściwości tlenków słabo zasadowe
Masa atomowa 168,93422(2)[a][4] u
Stan skupienia stały
Gęstość 9321 kg/m³
Temperatura topnienia 1545 °C[1]
Temperatura wrzenia 1950 °C[1] [2]
Numer CAS 7440-30-4
PubChem 23961[5]
Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)
Commons Multimedia w Wikimedia Commons
Wikisłownik Hasło tul w Wikisłowniku

Tul (Tm, łac. thulium) – pierwiastek chemiczny z grupy lantanowców w układzie okresowym, należący do tzw. metali ziem rzadkich. Tul jest najrzadszym lantanowcem występującym na Ziemi (promet jest rzadszym, ale nie występuje naturalnie na Ziemi). Jest łatwym w obróbce srebrzysto-szarym metalem. Pomimo jego wysokiej ceny[2], tul jest używany jako źródło promieniowania w przenośnych aparatach Roentgena i w laserach półprzewodnikowych.

Historia[edytuj | edytuj kod]

Tul został odkryty przez szwedzkiego chemika i geologa Per T. Cleve’a w 1879 podczas szukania zanieczyszczeń w tlenkach pierwiastków ziem rzadkich (ok. 40 lat wcześniej, tą samą metodą Carl Gustaf Mosander odkrył inne pierwiastki ziem rzadkich). Cleve rozpoczął od usunięcia wszystkich znanych zanieczyszczeń z tlenku erbu(III), a z pozostałości wyizolował dwie nowe substancje: brązową i zieloną. Brązową substancją był tlenek holmu, nazwany przez niego holmia, a zieloną tlenek nieznanego pierwiastka, który Cleve nazwał thulia. Nazwę zaczerpnął od nazwy Thule – mitycznej wyspy na krańcu świata, najwcześniejszej nazwy Skandynawii[3].

Pierwszym badaczem, któremu udało się uzyskać niemal czysty tul, był Charles James, brytyjski emigrant pracujący na University of New Hampshire w Durhan, New Hampshire. W 1911 ogłosił, że udało mu się otrzymać czysty tul za pomocą wynalezionej przez siebie metodą krystalizacji frakcyjnej z wykorzystaniem bromianów (soli kwasu bromowego). By stwierdzić, że materiał jest jednorodny potrzebował 15 000 powtórzeń czynności służących oczyszczeniu próbki.

Występowanie i otrzymywanie[edytuj | edytuj kod]

Zawartość tulu w skorupie ziemskiej wynosi 0,52 mg/kg, zaś w wodzie oceanów 0,00000017 mg/l[6]. Tul w niewielkich ilościach występuje w rudach bogatych w itr, takich jak: ksenotym, euksenit, samarskit, gadolinit, fergusonit. W śladowych ilościach występuje w monacycie (~0.007% tulu), który jest surowcem, z którego tul otrzymuje się za pomocą wymiany jonowej. Nowsze techniki wymiany jonowej i ekstrakcji rozpuszczalnikowej spowodowały uproszczenie otrzymywania metali ziem rzadkich, co doprowadziło do obniżenia kosztów produkcji tulu. Obecnie głównym źródłem metalu jest adsorpcja jonów z glin wydobywanych na południu Chin. W glinach tych 2/3 zawartości wszystkich metali rzadkich stanowi itr, tul natomiast stanowi około 0,5%. Metaliczny tul może być otrzymany z tlenku tulu poprzez jego redukcję lantanem w jego temperaturze topnienia 1545 °C. Tul jest oddzielany od lantanu poprzez sublimację w próżni. Pary metalu są kondensowane do postaci krystalicznego metalu wolnego od zanieczyszczeń lantanem[3]. Obecnie szacuje się, że tul ma podobny stopień rozpowszechnienia jak srebro, kadm, złoto czy jod[7].

Właściwości[edytuj | edytuj kod]

Właściwości fizyczne[edytuj | edytuj kod]

Czysty tul jako metal ma jasny, srebrny połysk, jest miękki, plastyczny i kowalny. Posiada gęsto upakowaną strukturę heksagonalną[3]. Tul jest ferromagnetykiem poniżej 32 K, antyferromagnetykiem w przedziale temperatur 32-56 K, a od temperatury 56 K staje się paramagnetykiem.

Właściwości chemiczne[edytuj | edytuj kod]

Metaliczny tul w normalnych warunkach, w atmosferze powietrza powoli matowieje, a w temperaturze 150 °C tworzy tlenek tulu(III):

4 Tm + 3 O2 → 2 Tm2O3

Tul jest elektrododatni i reaguje powoli z zimną wodą, znacznie szybciej z gorącą, tworząc wodorotlenek tulu(III):

2 Tm (s) + 6 H2(l) → 2 Tm(OH)3 (aq) + 3 H2 (g)

Metal w temperaturze pokojowej powoli reaguje ze wszystkimi fluorowcami. Reakcje przebiegają szybko w temperaturach powyżej 200 °C:

2 Tm (s) + 3 F2 (g) → 2 TmF3 (s) (biały)
2 Tm (s) + 3 Cl2 (g) → 2 TmCl3 (s) (żółty)
2 Tm (s) + 3 Br2 (g) → 2 TmBr3 (s) (biały)
2 Tm (s) + 3 I2 (g) → 2 TmI3 (s) (żółty)

Tul łatwo roztwarza się w rozcieńczonym kwasie siarkowym tworząc jasnozielone roztwory zawierające jony Tm(III) w postaci kompleksów [Tm(OH2)9]3+[8]

2 Tm (s) + 3 H2SO4 (aq) → 2 Tm3+ (aq) + 3 SO2−4 (aq) + 3 H2 (g)

Izotopy[edytuj | edytuj kod]

Występujący w przyrodzie tul składa się w 100% z jednego, stabilnego izotopu, 169Tm. Znanych jest 31 radioizotopów tulu, spośród których najtrwalszymi są 171Tm z okresie półtrwania T1/2 wynoszącym 1,92 lat, 170Tm o T1/2=128,6 dnia, 168Tm o T1/2=93,1 dni, 167Tm o T1/2=9,25 dni. Pozostałe izotopy posiadają okresy półtrwania krótsze niż 64 godziny, z których większość posiada T1/2 < 2 min. Tul posiada izotopy o zakresie mas atomowych od 145.966 unitów (146Tm) do 176.949 u (177Tm). Podstawowy procesem rozpadu przed najstabilniejszym i najbardziej rozpowszechnionym izotopem 169Tm, jest wychwyt elektronu, natomiast podstawowym procesem po izotopie 169Tm jest rozpad beta. W pierwszym przypadku podstawowym produktem rozpadu są izotopy pierwiastka o liczbie atomowej 68 (Erb), a w drugim przypadku izotopy pierwiastka 70 (Iterb)[7].

Zastosowanie[edytuj | edytuj kod]

Lasery[edytuj | edytuj kod]

Potrójnie domieszkowany Holmem-Chromem-Tulem YAG (Ho:Cr:Tm:YAG, lub Ho,Cr,Tm:YAG) jest używany w laserach jako wysokiej wydajności medium. Wypromieniowuje światło o długości 2097 nm i znajduje szerokie zastosowanie w wojsku, medycynie i meteorologii. Pojedynczo domieszkowane tulem lasery YAG (Tm:YAG) wypromieniowują światło o długościach fali pomiędzy 1930, a 2040 nm. Długość fali laserów opartych na tulu jest bardzo wydajna w zastosowaniu do powierzchownej ablacji tkanek, z minimalną głębokością koagulacji, co czyni je bardzo atrakcyjnymi dla chirurgii wykorzystującej lasery, szczególnie dla litotrypsji laserowej czy leczenia łagodnej hiperplazji prostaty[9].

Źródło promieniowania[edytuj | edytuj kod]

Ważnym zastosowaniem tulu jest produkcja przenośnych źródeł promieniowania gamma, które są aktywne przez około rok. Źródła te są stosowane w diagnozach medycznych i dentystycznych, oraz do wykrywania uszkodzeń niedostępnych elementów maszyn i urządzeń elektrycznych. Źródło promieniowania nie wymaga nadmiernej ochrony. Do zabezpieczenia źródła wystarczy niewielka ołowiowa nasadka[10].

Inne[edytuj | edytuj kod]

Tul może być, także używany w tworzywach ceramicznych i magnetycznych (ferryty), podobnych do stopów itr-żelazo, używanych w technologii mikrofalowej[10].

Rynek tulu[edytuj | edytuj kod]

Wysokiej czystości tlenek tulu (99% i 99,9%), otrzymany za pomocą rozdzielania na drodze wymiany jonowej, stał się dostępny handlowo od lat 50. XX wieku. Cena rynkowa kilograma tlenku tulu w latach 1959-1998 oscylowała w przedziale 4 600-13 300 $, spadając do 1950 $ w roku 2003[11][12]. Tul jest drugim po lutecie pod względem ceny metalem ziem rzadkich[11][12].

Uwagi

  1. Liczba w nawiasie oznacza niepewność ostatniego podanego miejsca po przecinku.

Przypisy

  1. 1,0 1,1 1,2 Tul (ang.). Karta charakterystyki produktu Sigma-Aldrich dla Stanów Zjednoczonych. [dostęp 2011-10-04].
  2. 2,0 2,1 Mr. Everett.: Thulium (ang.). 2011-03-17. [dostęp 2011-03-23].
  3. 3,0 3,1 3,2 3,3 Pradyot Patnaik: Handbook of inorganic chemicals. New York: McGraw-Hill, 2003, s. 932-933. ISBN 0-07-049439-8. (ang.)
  4. Standard Atomic Weights Revised v2 (ang.). IUPAC, 2013-09-24. [dostęp 2013-10-09].
  5. Tul – podsumowanie (ang.). PubChem Public Chemical Database.
  6. John W. Morgan, Edward Anders. Chemical composition of Earth, Venus, and Mercury. „Proceedings of the National Academy of Sciences”. 77 (12), s. 6973-6977, Grudzień 1980 (ang.). [dostęp 24-03-2011]. 
  7. 7,0 7,1 11: Table of the Isotopes. W: David R. Lide: CRC Handbook of Chemistry and Physics, 89th Edition (Crc Handbook of Chemistry and Physics). CRC. ISBN 1-4200-6679-X. (ang.)
  8. Mark Winter (The University of Sheffield and WebElements Ltd, UK): Reactions of thulium (ang.). [dostęp 2011-03-23].
  9. Frank J. Duarte: Tunable Laser Applications. Wyd. drugie. CRC, 2008, s. 214-215. ISBN 978-1-4200-6009-6. (ang.)
  10. 10,0 10,1 N. Krishnamurthy: Extractive metallurgy of rare earths. Boca Raton, Fla.: CRC Press, 2005, s. 30. ISBN 0-415-33340-7. (ang.)
  11. 11,0 11,1 James B. Hedrick: Rare-Earth Metals. USGS. [dostęp 2011-03-23].
  12. 12,0 12,1 Stephen B. and James B. Hedrick: Rare Earth Elements. [dostęp 2011-03-23].