Iloczyn wektorowy

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Iloczyn wektorowydziałanie dwuargumentowe przyporządkowujące parze wektorów i trójwymiarowej przestrzeni euklidesowej, w której zadana jest baza uporządkowana :

  • wektor zerowy, jeżeli wektory i liniowo zależne

bądź w przeciwnym przypadku, taki wektor , że:

  • jest prostopadły zarówno do i , tzn. jest wektorem normalnym do płaszczyzny wyznaczonej przez i
  • długość wektora jest równa polu powierzchni równoległoboku wyznaczonego przez wektory i
  • układ wektorów jest zorientowany zgodnie z bazą .

Iloczyn wektorowy wektorów i oznacza się symbolem .

Pojęcie iloczynu wektorowego w sposób istotny zależy od doboru bazy przestrzeni. W przypadku, gdy baza trójwymiarowej przestrzeni kartezjańskiej nie jest sprecyzowana przyjmuje się za bazę kanoniczną złożoną z wektorów

.

Historia[edytuj]

W 1843 roku William Rowan Hamilton opisał kwaterniony za pomocą których współcześnie niekiedy opisuje się iloczyn wektorowy. Niezależnie, w tym samym okresie, tj. w roku 1844, Hermann Günther Grassmann zdefiniował tzw. „iloczyn geometryczny” bez odwoływania się jawnie do operacji „mnożenia” wektorów[1].

Grassman, zainspirowany pracami Hamiltona, publikuje drugą wersję swojego traktatu, która okazuje się znacznie przystępniejsza; również Hamilton wyraża się pochlebnie po zapoznaniu się z nią. W dalszej kolejności, James Clerk Maxwell używa teorii kwaternionów w fizyce, zaś William Kingdon Clifford pod wpływem prac Grassmanna i Hamiltona, z wyraźnym wskazaniem na pierwszego z nich, formalizuje dziedzinę nazywaną dziś analizą wektorową. Opierając się na powstałej teorii, w tym na pracach Clifforda i Maxwella, Josiah Willard Gibbs wydaje w 1881 roku Elements of Vector Analysis Arranged for the Use of Students of Physics[2]. Choć fizycy szybko przyjęli formalizm Gibbsa, to do matematyki znajduje on drogę znacznie później i dopiero po kilku modyfikacjach; o początkowej niechęci matematyków mogą świadczyć słowa Petera Guthriego Taita z jego przedmowy do trzeciego wydania swojego traktatu o kwaternionach, w której nazywa on nowy formalizm Gibbsa „pewnego rodzaju hermafrodytycznym potworem zestawionym z notacji Hamiltona i Grassmanna”[3].

Znak a orientacja[edytuj]

 Osobne artykuły: bazaorientacja.
Znajdowanie zwrotu iloczynu wektorowego za pomocą reguły prawej dłoni.

W dowolnej przestrzeni kartezjańskiej można wyróżnić dwa rodzaje baz uporządkowanych: zgodnych z bazą standardową i z nią niezgodnych. Baza uporządkowana przestrzeni kartezjańskiej jest zorientowana dodatnio jeżeli ma tę samą orientację co baza kanoniczna, tzn. wyznacznik macierzy przejścia od tej bazy do bazy kanonicznej jest dodatni. O bazach, które nie są zorientowane dodatnio mówi się, że są zorientowane ujemnie.

W ten sposób w przestrzeni jednowymiarowej można wybrać jeden wektor, który będzie tworzył bazę zorientowaną dodatnio lub ujemnie; w przestrzeni dwuwymiarowej dowolny niezerowy wektor można uzupełnić do bazy dodatnio lub ujemnie zorientowanej, podobnie ma się rzecz dla pary (liniowo niezależnych) wektorów uzupełnianej o wektor w przestrzeni trójwymiarowej – można to uczynić na dwa sposoby uzyskując układ wektorów zgodny z bazą standardową lub do niej przeciwny.

Iloczyn wektorowy, tak jak iloczyn skalarny, zależy od metryki przestrzeni euklidesowej, ale w przeciwieństwie do niego zależy również od wyboru orientacji lub „skrętności” tej przestrzeni. Wybór bazy standardowej w powyższej definicji oznacza ustalenie dodatniej (prawoskrętnej) orientacji przestrzeni, która do wyznaczania zwrotu iloczynu wektorowego wymaga użycia reguły prawej dłoni (reguły śruby prawoskrętnej); w przestrzeni o orientacji ujemnej (lewoskrętnej) należy korzystać z reguły lewej dłoni (reguły śruby lewoskrętnej).

Ustalenie orientacji może sprawiać problemy przy zmianie układu (np. odbicie prawoskrętnego układu współrzędnych w lewoskrętny), gdyż zwrot powinien być zachowany – trudność tę można rozwiązać przyjmując, że w ogólnym przypadku iloczyn wektorowy nie jest (prawdziwym) wektorem, lecz pseudowektorem (zob. uogólnienia).

Własności[edytuj]

Iloczyn wektorowy jest

Ponadto iloczyn wektorowy spełnia tzw. tożsamość Jacobiego:

Iloczyn wektorowy nie ma własności skracania: tzn. jeśli

,

gdzie jest wektorem niezerowym, to na ogół . Istotnie, jeżeli

,

to z prawa rozdzielności wynika, że

.

Powyższa równość zachodzi np. gdy wektor jest równoległy do oraz . Jeśli jednak równości · · oraz × × zachodzą równocześnie, to wektory i są równe. Istotnie, · oraz × , a więc jest jednocześnie równoległy i prostopadły do niezerowego wektora , co jest możliwe tylko wtedy, gdy

Obliczanie[edytuj]

Zapis we współrzędnych[edytuj]

Wektory jednostkowe danego ortogonalnego układu współrzędnych spełniają poniższe równości:

Wspomniane trzy równości wystarczają wraz z antysymetrycznością i dwuliniowością do wyznaczenia iloczynu wektorowego dowolnych dwóch wektorów; w szczególności zachodzą także równości:

oraz

Korzystając z powyższych reguł można obliczyć współrzędne iloczynu wektorowego dwóch wektorów bez potrzeby wyznaczania kątów; niech

oraz

Iloczyn wektorowy powyższych wektorów można obliczyć korzystając z rozdzielności względem dodawania tego działania:

a ponieważ mnożenie przez skalar jest przemienne z mnożeniem wektorów, to

czyli zgodnie z powyższymi regułami

a więc ostatecznie po wyłączeniu wspólnych wyrazów jest

Mnemotechniki[edytuj]

Zgodnie z interpretacją geometryczną definicję iloczynu wektorowego można przedstawić również jako wyznacznik macierzy formalnej:

Wyznacznik ten można obliczyć za pomocą reguły Sarrusa,

lub rozwinięcia Laplace’a

co w obu przypadkach daje składowe wektora wynikowego.

Reprezentacja macierzowa[edytuj]

Niech symbol oznacza macierz antysymetryczną

Wówczas iloczyn wektorowy można przedstawić jako mnożenie macierzy przez wektor (działanie endomorfizmu na wektorze),

gdzie oznacza macierz transponowaną do Ponadto jeśli wektor sam jest iloczynem wektorowym,

to

Z ogólnych własności iloczynu wektorowego wynika natychmiast, że

oraz

zaś z antysymetryczności jest

Notacja indeksowa[edytuj]

Iloczyn wektorowy

można przedstawić zwięźle za pomocą symbolu Leviego-Civity, jako

gdzie, jak wyżej, indeksy odpowiadają ortogonalnym składowym wektorów. Ta charakteryzacja często przedstawiana jest w jeszcze bardziej zwarty sposób w konwencji sumacyjnej Einsteina jako

Reprezentacja ta jest jeszcze jedną postacią antysymetrycznej reprezentacji iloczynu wektorowego:

Wzór Lagrange’a[edytuj]

Ponieważ iloczyn wektorowy nie jest przemienny, to w ogólności

Podwójnym iloczynem wektorowym nazywa się się iloczyn wektorowy

choć w ogólności zwykle nie korzysta się z notacji beznawiasowej w celu uniknięcia nieporozumień. Z własności iloczynu wektorowego zachodzą równości:

Ponadto prawdziwy jest wzór Lagrange’a, który łączy podwójny iloczyn wektorowy z iloczynem skalarnym:

Dowód
Pierwsza składowa jest dana jako
dodając i odejmując otrzymuje się
Podobnie kolejne składowe:
oraz
Z ich połączenia wynika teza.

W celu zapamiętania prawej strony równania stosuje się zabiegi mnemotechnicznebac minus cab”. Wzór Lagrange’a wykorzystuje się często w fizyce przy upraszczaniu wyrażeń wektorowych. W przypadku gradientów, istotnym w analizie wektorowej, wzór ten przyjmuje postać[4]

Jest to zarazem przypadek szczególny ogólniejszego operatora Laplace’a-de Rhama

Iloczyn mieszany[edytuj]

Rys 1. Pole równoległoboku jako iloczyn wektorowy.
Rys 2. Objętość równoległościanu wyznaczona za pomocą iloczynów skalarnego i wektorowego; linie przerywane pokazują rzuty na oraz na w pierwszym kroku znajdowania iloczynów skalarnych.
 Osobny artykuł: iloczyn mieszany.

Długość iloczynu wektorowego wektorów i , to z określenia pole powierzchni równoległoboku o bokach będących tymi wektorami (zob. rys. 1). Z pomocą iloczynu wektorowego definiuje się iloczyn mieszany trójki wektorów wzorem

.

W szczególności, zachodzi wzór

.

Iloczyn mieszany trójki wektorów jest równy objętości równoległościanu o bokach będących danymi wektorami (zob rys. 2).

Związki z iloczynem skalarnym[edytuj]

Iloczyny wektorowy i skalarny są ze sobą związane równością

Prawa strona tej równości to wyznacznik Grama wektorów oraz , czyli kwadrat pola równoległoboku wyznaczanego przez te wektory (to spostrzeżenie znajduje zastosowanie w uogólnieniu przedstawionym w sekcji algebra wieloliniowa). Warunek ten opisuje długość iloczynu tych wektorów; wraz z wymaganiem ortogonalności iloczynu wektorowego do swoich czynników i umożliwia on podanie alternatywnej definicji iloczynu wektorowego: korzystając z własności iloczynu skalarnego można wyrazić długość za pomocą kąta,

co z powyższą tożsamością daje

Zgodnie z regułą jedynki trygonometrycznej zachodzi równość

która była punktem wyjścia dla długości iloczynu wektorowego w interpretacji geometrycznej.

Tożsamość daną wzorem

gdzie i mogą być wektorami -wymiarowymi nazywa się tożsamością Lagrange’a. W przypadku umożliwia ona wyrażenie długości iloczynu wektorowego za pomocą jego składowych:

Ten sam wynik uzyskuje się bezpośrednio korzystając ze składowych iloczynu wektorowego otrzymanych ze wzoru wyznacznikowego. Równanie Lagrange’a w jest przypadkiem szczególnym multyplikatywności normy algebry kwaternionów (zob. kwaterniony).

Jest to zarazem przypadek szczególny innego wzoru, również nazywanego niekiedy tożsamością Lagrange’a, będącego trójwymiarowym przypadkiem tożsamości Bineta-Cauchy’ego:

Jeśli oraz to wyrażenie to upraszcza się do powyższego.

Istnieje również własność łącząca iloczyn wektorowy z iloczynem mieszanym:

Uogólnienia[edytuj]

Algebry Liego[edytuj]

 Zobacz też: algebra Liegogrupa ortogonalna.

Grupa ortogonalna to podgrupa grupy euklidesowej , czyli grupy izometrii przestrzeni która zawiera wyłącznie izometrie zachowujące początek. Podgrupa grupy zawiera z kolei zaś tylko te izometrie zachowujące początek, które dodatkowo nie zmieniają orientacji przestrzeni – jest to grupa symetrii (trójwymiarowej) sfery i wszystkich obiektów o symetrii sferycznej względem środka tej sfery.

Iloczyn wektorowy jest jednym z prostszych nawiasów Liego, tzn. dwuargumentowych działań spełniających aksjomaty wieloliniowości, antysymetryczności i tożsamość Jacobiego; przestrzenie liniowe wyposażone w nawiasy Liego nazywa się algebrami Liego, które bada dział matematyki nazywany teorią Liego. Innym przykładem algebry Liego na jest algebra Heisenberga, w której nawias Liego opisany jest za pomocą zależności oraz

Przedstawione wyżej własności opisują iloczyn wektorowy jako nieparzyste (antysymetryczne) przekształcenie dwuliniowe, które jako działanie nie jest ani łączne, ani przemienne. Przestrzeń liniowa wyposażona w iloczyn wektorowy tworzy więc nieprzemienną, niełączną algebrę nad ciałem, która jest algebrą Liego rzeczywistej grupy ortogonalnej w trzech wymiarach, SO(3), z iloczynem wektorowym pełniącym rolę nawiasu Liego – pominięcie struktury afinicznej oznacza wybór podalgebry w której zachowywany jest początek (brak przesunięć), z kolei ustalenie orientacji (brak odbić) oznacza dalsze zawężenie do podalgebry związanych odpowiednio z podgrupami grupy izometrii oraz Ograniczenie to jest równoważne z wymaganiem, by endomorfizmy tej przestrzeni zachowywały iloczyn skalarny.

Dla danego elementu algebry Liego działanie dołączone elementu na definiuje się jako endomorfizm (liniowy) dany wzorem

dla dowolnego z przestrzeni Endomorfizmy przestrzeni można utożsamiać z macierzami stopnia 3, przy czym zawężenie działania do odpowiada zawężeniu klasy macierzy do macierzy antysymetrycznych. Tłumaczy to istnienie wzajemnie jednoznacznego odwzorowania między mnożeniem wektorowym przez ustalony wektor a zbiorem macierzy antysymetrycznych stopnia 3 opisanych w sekcji reprezentacja macierzowa.

Kwaterniony i oktoniony[edytuj]

 Osobne artykuły: kwaternionyoktoniony.

Iloczyn wektorowy można opisać za pomocą kwaternionów. Wektory jednostkowe odpowiadają obrotom o 180° względem odpowiednich osi, tzn. obrotom reprezentowanym przez kwaterniony czyste (tzn. z zerową częścią skalarną) o normach jednostkowych.

W ten sposób zależności między w iloczynie skalarnym zgadzają się z multyplikatywnymi zależnościami między kwaternionami Ogólniej, niech wektorowi postaci odpowiada kwaternion wtedy iloczyn wektorowy odpowiada wzięciu części nierzeczywistej iloczynu kwaternionów; część rzeczywista to ujemny iloczyn skalarny dwóch wektorów. Utożsamiając kwaterniony czyste z można myśleć o iloczynie wektorowym jak o połowie komutatora dwóch kwaternionów, co opisano również dalej.

Konstrukcję iloczynu przeprowadzoną z użyciem orientacji i struktury metrycznej (poprzez niejawne wykorzystanie funkcji trygonometrycznych bądź iloczynu skalarnego, zob. sekcja definicja) dla trzech wymiarów można powtórzyć dla wymiarów tak, by biorąc iloczyn wektorów uzyskać wektor prostopadły do nich wszystkich. Jeśli jednak iloczyn ma być nietrywialnym iloczynem dwuargumentowym dającym w wyniku wektory, to można ją wykonać wyłącznie w trzech i siedmiu wymiarach. Wynika to z faktu iż jedynymi unormowanymi algebrami z dzieleniem są te o wymiarach 1, 2, 4 oraz 8, o czym mówi twierdzenie Hurwitza. Iloczyn wektorów siedmiowymiarowych jest tym samym związany z oktonionami w podobny sposób do tego, jak iloczyn wektorów trójwymiarowych jest związany z kwaternionami.

Przypisy

  1. Hermann Günther Grassmann: Die lineale Ausdehnungslehre, eine neuer Zweig der Mathematik, dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert. Otto Wigand, 1844.
  2. Josiah Willard Gibbs: Elements of vector analysis: arranged for the use of students in physics. Morehouse & Taylor, 1884.
  3. Wstęp. W: Peter Guthrie Tait: An elementary treatise on quaternions. Wyd. 3. Londyn: Cambridge University Press, 1890, s. vi. Cytat: „Even Prof. Willard Gibbs must be ranked as one of the retarders of Quaternion progress, in virtue of his pamphlet on Vector Analysis; a sort of hermaphrodite monster, compounded of the notations of Hamilton and of Grassmann”. (ang.)
  4. W istocie poniższy wzór odpowiada wzorowi równoważnemu ze wzorem Lagrange’a.

Bibliografia[edytuj]

  • Bronsztejn I.N., Siemiendiawjew K.A., Matematyka. Poradnik encyklopedyczny, PWN, Warszawa 1996.