Glin

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Glin
magnez ← glin → krzem
Wygląd
srebrzystobiały
Glin
Widmo emisyjne glinu
Widmo emisyjne glinu
Ogólne informacje
Nazwa, symbol, l.a. glin, Al, 13
(łac. aluminium)
Grupa, okres, blok 13, 3, p
Stopień utlenienia III
Właściwości metaliczne metal
Właściwości tlenków amfoteryczne
Masa atomowa 26,9815385(7) u[4][a]
Stan skupienia stały
Gęstość 2700 kg/m³[1]
Temperatura topnienia 660,32 °C[1]
Temperatura wrzenia 2519 °C[1]
Numer CAS 7429-90-5
PubChem 5359268[5]
Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)

Glin (w technice: aluminium; Al, łac. aluminium) – pierwiastek chemiczny, metal z bloku p układu okresowego.

Jedynym izotopem stabilnym jest 27Al.

Glin jest trzecim najpowszechniej występującym pierwiastkiem w skorupie ziemskiej. Od jego symbolu (oraz symbolu krzemu) wywodzi się dawna nazwa najbardziej zewnętrznej warstwy globu – sial.

Historia[edytuj]

Sole i tlenki glinu znane były od zarania dziejów. Uwodniony, mieszany siarczan tego pierwiastka, ałun, był używany jako środek antyseptyczny przez starożytnych Greków. Istnienie tego pierwiastka i nazwę zasugerował Louis-Bernard Guyton de Morveau w 1761 r. W 1807 podobną sugestię wyraził sir Humphry Davy, który zaproponował współczesną nazwę (aluminium). Istnieją kontrowersje na temat tego kto pierwszy wyodrębnił ten pierwiastek w stanie czystym. Według jednych źródeł był to Friedrich Wöhler w 1827 r. wg innych Hans Christian Ørsted w 1825 r. Amerykanin Charles Martin Hall i Francuz Paul-Louis Toussaint Héroult w 1886 opracowali produkcję glinu na skalę przemysłową. Niezależnie od siebie opracowali metodę otrzymywania aluminium w procesie elektrolizy stopionej mieszaniny kriolitu i boksytu, obecnie znanym jako proces Halla-Heroulta.

Właściwości chemiczne[edytuj]

Glin w stanie czystym szybko utlenia się na powietrzu, ulegając pasywacji[6][7]. Pierwotnie pokrywa się warstwą Al
2
O
3
o grubości kilku nm. Pod wpływem wilgoci zewnętrzna warstwa tej powłoki ulega częściowej hydrolizie i składa się z Al
2
O
3
i Al(OH)
3
. Natomiast wewnętrzną warstwę tworzy Al
2
O
3
, częściowo uwodniony do Al(O)OH. Stanowi ona ścisłą powłokę chroniącą metal przed dalszą korozją w zwykłych warunkach[7][8]. Jest ona odporna na działanie roztworów wodnych o pH 4–9[6].

Łatwo roztwarza się w rozcieńczonych roztworach mocnych kwasów (np. HCl) i zasad (np. NaOH lub KOH) wypierając wodór, np.[7]:

2Al + 6HCl → 2AlCl
3
+ 3H
2
2Al + 2NaOH + 6H
2
O → 2Na[Al(OH)
4
]
+ 3H
2

Jego reaktywność wobec kwasu siarkowego opisywana jest różnie:

  • wg François Cardarelliego reaguje z rozcieńczonym H
    2
    SO
    4
    z wydzieleniem wodoru[7]:
2Al + 3H
2
SO
4
Al
2
(SO
4
)
3
+ 3H
2
a ze stężonym H
2
SO
4
reaguje łatwo z wydzieleniem dwutlenku siarki[7]:
2Al + 6H
2
SO
4
→ Al
2
(SO
4
)
3
+ 6H
2
O + 3SO
2
  • wg Richarda J. Lewisa, Sr., reaguje jedynie z gorącym stężonym H
    2
    SO
    4
    , natomiast na działanie kwasu rozcieńczonego lub zimnego stężonego jest odporny[8].

W stężonym kwasie azotowym ulega silnej pasywacji, dzięki czemu jest odporny na jego działanie[7][8] i jest wykorzystywany w przemyśle do wytwarzania zbiorników do jego transportu[7]. Z kolei z chlorowanymi węglowodorami reaguje gwałtownie[7]. Także H
2
O
w wysokiej temperaturze (180 °C) utlenia glin szybko[8].

W związkach występuje na III stopniu utlenienia, bardzo rzadko również na I i II.

Właściwości fizyczne[edytuj]

Jest srebrzystobiałym metalem o niskiej gęstości, bardzo dobrej kowalności i dużej plastyczności. Jest łatwy w odlewaniu i obróbce, podczas której nie tworzy iskier. Wykazuje dobre przewodnictwo elektryczne, jest niemagnetyczny. W postaci czystej jego właściwości mechaniczne są słabe, które jednak można znacząco poprawić poprzez niewielkie ilości dodatków stopowych. Cienkie powłoki naparowanego glinu są trwałymi, bardzo dobrymi zwierciadłami dla światła widzialnego i promieniowania cieplnego[9] (czysty glin odbija do 99% światła widzialnego i do 95% podczerwieni[potrzebny przypis]).

Zastosowanie[edytuj]

Stopy aluminium[edytuj]

 Osobny artykuł: Stopy aluminium.

Ze względu na swoje właściwości, takie jak mała gęstość i odporność na korozję, stopy glinu z miedzią i magnezem zwane duraluminium znalazły wiele zastosowań i są używane do wyrobu szerokiej grupy produktów – od części karoserii i silników samochodów, przez poszycia i elementy konstrukcyjne samolotów, po części statków kosmicznych. Tak zwane aluminium utwardzane dyspersyjnie jest wykorzystywane w produkcji koszulek elementów paliwowych i konstrukcyjnych rdzeni niektórych badawczych reaktorów jądrowych. Stopów aluminium z manganem i magnezem używa się do produkcji puszek do napojów (stopy 3004 lub 3104 na ścianki oraz 5182 na wieczka).

Czysty glin[edytuj]

Próżniowe napylenie glinu na powierzchnię szkła lub przezroczystych tworzyw sztucznych wykorzystywane jest do produkcji luster.

Pył glinowy[edytuj]

Sproszkowany glin używany jest w hutnictwie do otrzymywania metali z ich tlenków w procesie aluminotermii. Stosowana w tym procesie mieszanina glinu oraz tlenków metali jest znana pod nazwą termit. Termitu używa się do spawania rur i szyn kolejowych, a także do produkcji broni zapalającej. Pył glinowy jest często składnikiem farb metalicznych odpowiedzialnym za charakterystyczny połysk.

W syntezie chemicznej pył aluminium stosowany jest w reakcjach uwodorniania[10] i jako zamiennik cynku w reakcji Reformatskiego[11].

Stosowany jest również w przemyśle spożywczym, jako barwnik metaliczny. Używany jest przy srebrnych dekoracjach ciast i tortów. Parlament Europejski uznał, że dodawanie aluminium powinno być zakazane, ponieważ istnieją przesłanki, że ma związek z chorobą Alzheimera, choć do tej pory nie udało się tego jednoznacznie udowodnić.

Folia aluminiowa[edytuj]

Folie aluminiowe o różnej grubości stosowane są do pakowania (m.in. żywności) oraz do różnorodnych celów w technikach laboratoryjnych. Folia aluminiowa jest także wykorzystywana jako tzw. lustro lub ekran cieplny (odbijający promieniowanie podczerwone) do zapobiegania utraty ciepła. W tym celu stosuje się albo samą folię aluminiową (np. o grubości 0,05 mm), albo połączoną trwale z materiałem termoizolacyjnym.

Związki[edytuj]

Rubin z Indii – czerwona odmiana korundu

Najważniejsze związki glinu to tlenek glinu i amfoteryczny wodorotlenek glinu. Glin tworzy też wodorek, a tetrahydroglinian litu LiAlH4 jest powszechnie stosowanym w chemii organicznej silnym środkiem redukującym. Duże znaczenie przemysłowe mają też aluminoksany, a zwłaszcza MAO (metylowy aluminoksan), z którego produkuje się sita molekularne, oraz powszechnie wykorzystuje jako stałe podłoże dla wielu katalizatorów. Glina i kaolin, powszechnie wykorzystywane przy produkcji ceramiki, to złożone mieszaniny glino-krzemianów.

Znaczenie biologiczne[edytuj]

Znaczenie dla fauny[edytuj]

Wodorowęglan glinu Al(HCO3)3, ortofosforan glinu AlPO4 oraz krzemian glinu Al2(SiO3)3 są stosowane jako leki przy nadkwasocie.

Glin jest całkowicie asymilowany przez wątrobę i nie wydalany na zewnątrz, nie wykazując przy tym typowych cech toksycznych. Dlatego też większość źródeł zalicza go do metali obojętnych i z tego względu w pewnych określonych warunkach dopuszczony jest do użytkowania w gastronomii. Jednak w przypadku termicznej obróbki żywności, przy bezpośrednim kontakcie z wodą, glin wykazuje wysoką rozpuszczalność i w nadmiernych ilościach przenika do pożywienia. Z tego powodu w Polsce już w latach 80. systematycznie wycofywano z użytku naczynia aluminiowe i obecnie jego znaczenie jest marginalne. Nadmiar glinu nadmiernie obciąża wątrobę, a przyjmowanie dużych dawek tego pierwiastka, zwłaszcza w okresie dzieciństwa, skutkuje upośledzeniem funkcji i mniejszą wydajnością tego organu w późniejszych latach. Ponadto należy wspomnieć, że glin łatwo asymiluje się ze związkami wapnia łatwo przyswajalnego do związków trudno przyswajalnych. Dlatego też należy ograniczać jego spożycie w okresie wzrostu i rozwoju układu kostnego. Nie jest również wskazane, aby w nadmiarze spożywały go osoby w trakcie leczenia złamań i cierpiące na odwapnienie kości.

Znaczenie dla flory i gleb[edytuj]

Glin, podobnie jak krzem, nie jest pierwiastkiem niezbędnym dla życia roślin. Mało tego, w dużych ilościach może być toksyczny zarówno dla roślin, jak i dla zwierząt zjadających roślinę zawierającą glin. Obecność glinu w glebie związana jest z obecnością jonów H+. Aby pozbyć się glinu z gleby, najczęściej stosuje się równolegle neutralizacje pH oraz sadzenie roślin, które pobierają glin z gruntu w większych ilościach[12].

Wytwarzanie[edytuj]

Aluminium wytwarzane jest z boksytu w następujących po sobie procesach:

  1. proces Bayera
  2. proces elektrolizy Halla-Héroulta

Uwagi

  1. Wartość w nawiasie oznacza niepewność związaną z ostatnią cyfrą znaczącą.

Przypisy

  1. a b c CRC Handbook of Chemistry and Physics, David R. Lide (red.), wyd. 90, Boca Raton: CRC Press, 2009, s. 4-44, ISBN 9781420090840.
  2. a b Glin (ang.) w wykazie klasyfikacji i oznakowania Europejskiej Agencji Chemikaliów. [dostęp 2015-04-10].
  3. Glin (nr 518573) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Stanów Zjednoczonych. [dostęp 2011-10-02].
  4. Publikacja w otwartym dostępie – możesz ją przeczytać Juris Meija i inni, Atomic weights of the elements 2013 (IUPAC Technical Report), „Pure and Applied Chemistry”, 88 (3), 2016, s. 265–291, DOI10.1515/pac-2015-0305.
  5. Glin (CID: 5359268) (ang.) w bazie PubChem, United States National Library of Medicine.
  6. a b Volkan Cicek, Bayan Al-Numan: Corrosion Chemistry. Scrivener Publishing/John Wiley & Sons, 2011, s. 24–25. ISBN 978-0-470-94307-6.
  7. a b c d e f g h François Cardarelli: Materials Handbook. A Concise Desktop Reference. Wyd. 2. Springer, 2008, s. 163–164. DOI: 10.1007/978-1-84628-669-8. ISBN 978-1-84628-668-1.
  8. a b c d aluminum. W: Richard J. Lewis (Sr): Hawley’s Condensed Chemical Dictionary. Wyd. 15. John Wiley & Sons, Inc., 2007, s. 44–45. ISBN 978-0-471-76865-4.
  9. CRC Handbook of Chemistry and Physics. Wyd. 88. Boca Raton: CRC Press, 2008, s. 4-3.
  10. T. Mallát, Zs. Bodnár, J. Petróa. Reduction by dissolving bimetals. „Tetrahedron”. 47 (3), s. 441–446, 1991. DOI: 10.1016/S0040-4020(01)90501-0 (ang.). 
  11. Zhen Shen, Jinqi Zhang, Huixian Zou, Minmin Yang. A novel one-pot reformatsky type reaction via bismuth salt in aqueous media. „Tetrahedron Lett.”. 38 (15), s. 2733–2736, 1997. DOI: 10.1016/S0040-4039(97)00456-5 (ang.). 
  12. Luis M. Thompson, Frederick R. Troeh: Gleba i jej żyzność. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne, 1978, s. 191–192.